Spaces:
Runtime error
Runtime error
File size: 2,348 Bytes
0ba78e9 0d5e0f7 0ba78e9 0d5e0f7 0ba78e9 0d5e0f7 0ba78e9 0d5e0f7 0ba78e9 0d5e0f7 f574f70 0d5e0f7 0ba78e9 0d5e0f7 0ba78e9 0d5e0f7 544774d 0ba78e9 544774d 0ba78e9 0d5e0f7 0ba78e9 0d5e0f7 0ba78e9 0d5e0f7 0ba78e9 f574f70 0ba78e9 f574f70 0ba78e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import os
from pathlib import Path
import streamlit as st
from dotenv import load_dotenv
from utils import get_compatible_models, get_metadata, http_post
if Path(".env").is_file():
load_dotenv(".env")
HF_TOKEN = os.getenv("HF_TOKEN")
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
TASK_TO_ID = {"binary_classification":1, "multi_class_classification": 2, "multi_label_classification": 3, "entity_extraction": 4, "extractive_question_answering":5, "translation":6, "summarization":8, "single_column_regression":10}
with st.form(key="form"):
dataset_name = st.selectbox("Select a dataset to evaluate on", ["lewtun/autoevaluate__emotion"])
# TODO: remove this step once we select real datasets
# Strip out original dataset name
original_dataset_name = dataset_name.split("/")[-1].split("__")[-1]
# In general this will be a list of multiple configs => need to generalise logic here
metadata = get_metadata(dataset_name)
dataset_config = st.selectbox("Select the subset to evaluate on", [metadata[0]["config"]])
splits = metadata[0]["splits"]
split_names = list(splits.values())
eval_split = splits.get("eval_split", split_names[0])
selected_split = st.selectbox("Select the split to evaluate on", split_names, index=split_names.index(eval_split))
compatible_models = get_compatible_models(metadata[0]["task"], original_dataset_name)
selected_models = st.multiselect("Select the models you wish to evaluate", compatible_models, compatible_models[0])
submit_button = st.form_submit_button("Make Submission")
if submit_button:
for model in selected_models:
payload = {
"username": AUTOTRAIN_USERNAME,
"task": TASK_TO_ID[metadata[0]["task_id"]],
"model": model,
"col_mapping": metadata[0]["col_mapping"],
"split": selected_split,
"dataset": original_dataset_name,
"config": dataset_config,
}
json_resp = http_post(
path="/evaluate/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
).json()
st.success(f"✅ Successfully submitted model {model} for evaluation with job ID {json_resp['id']}")
|