File size: 12,321 Bytes
0ba78e9
fd18ef6
0ba78e9
0d5e0f7
54f6b18
0ba78e9
6c14077
0ba78e9
6c14077
0d5e0f7
5b19fc7
 
0d5e0f7
0ba78e9
 
0d5e0f7
0ba78e9
 
 
6c14077
0d5e0f7
 
294f139
 
 
d7705b9
294f139
 
 
 
 
 
5b19fc7
 
 
da19d23
 
 
 
 
 
 
0153e97
4f5bbb3
 
d7705b9
da19d23
 
294f139
6c14077
d7705b9
 
 
 
 
 
 
 
f574f70
0d5e0f7
fd18ef6
6c14077
 
 
0ba78e9
2859204
6c14077
5b19fc7
 
 
 
 
6c14077
 
 
 
 
 
 
 
 
 
 
 
 
5b19fc7
 
 
 
 
6c14077
5b19fc7
6c14077
 
ea6c226
6c14077
 
54f6b18
294f139
 
 
 
da19d23
5b19fc7
fd18ef6
54f6b18
 
fd18ef6
 
 
 
 
 
54f6b18
5b19fc7
 
 
 
 
54f6b18
5b19fc7
 
 
54f6b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b19fc7
54f6b18
 
5b19fc7
 
 
54f6b18
 
 
 
 
 
 
 
 
 
 
 
 
5b19fc7
 
 
 
 
54f6b18
5b19fc7
 
 
54f6b18
 
 
 
 
 
 
 
 
 
 
 
 
5b19fc7
 
 
 
 
 
 
 
 
 
54f6b18
 
 
 
 
fd18ef6
 
 
 
 
 
54f6b18
 
 
 
 
 
 
 
 
 
 
5b19fc7
 
 
 
 
54f6b18
5b19fc7
 
 
54f6b18
 
5b19fc7
 
 
 
 
54f6b18
 
 
 
5b19fc7
 
 
54f6b18
 
 
 
 
0d5e0f7
2859204
 
6c14077
0d5e0f7
5b19fc7
 
da19d23
0d5e0f7
fd18ef6
 
 
 
 
8dec3b6
fd18ef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54f6b18
fd18ef6
 
 
 
 
 
 
8dec3b6
fd18ef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
746450e
fd18ef6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import uuid
from pathlib import Path

import pandas as pd
import streamlit as st
from datasets import get_dataset_config_names
from dotenv import load_dotenv
from huggingface_hub import list_datasets

from utils import (get_compatible_models, get_key, get_metadata, http_get,
                   http_post)

if Path(".env").is_file():
    load_dotenv(".env")

HF_TOKEN = os.getenv("HF_TOKEN")
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
DATASETS_PREVIEW_API = os.getenv("DATASETS_PREVIEW_API")


TASK_TO_ID = {
    "binary_classification": 1,
    "multi_class_classification": 2,
    # "multi_label_classification": 3, # Not fully supported in AutoTrain
    "entity_extraction": 4,
    "extractive_question_answering": 5,
    "translation": 6,
    "summarization": 8,
}

supported_tasks = list(TASK_TO_ID.keys())


###########
### APP ###
###########
st.title("Evaluation as a Service")
st.markdown(
    """
    Welcome to Hugging Face's Evaluation as a Service! This application allows
    you to evaluate any πŸ€— Transformers model with a dataset on the Hub. Please
    select the dataset and configuration below. The results of your evaluation
    will be displayed on the public leaderboard
    [here](https://huggingface.co/spaces/autoevaluate/leaderboards).
    """
)

all_datasets = [d.id for d in list_datasets()]
query_params = st.experimental_get_query_params()
default_dataset = all_datasets[0]
if "dataset" in query_params:
    if len(query_params["dataset"]) > 0 and query_params["dataset"][0] in all_datasets:
        default_dataset = query_params["dataset"][0]

selected_dataset = st.selectbox("Select a dataset", all_datasets, index=all_datasets.index(default_dataset))
st.experimental_set_query_params(**{"dataset": [selected_dataset]})


# TODO: In general this will be a list of multiple configs => need to generalise logic here
metadata = get_metadata(selected_dataset)
if metadata is None:
    st.warning("No evaluation metadata found. Please configure the evaluation job below.")

with st.expander("Advanced configuration"):
    ## Select task
    selected_task = st.selectbox(
        "Select a task",
        supported_tasks,
        index=supported_tasks.index(metadata[0]["task_id"]) if metadata is not None else 0,
    )
    ### Select config
    configs = get_dataset_config_names(selected_dataset)
    selected_config = st.selectbox("Select a config", configs)

    ## Select splits
    splits_resp = http_get(path="/splits", domain=DATASETS_PREVIEW_API, params={"dataset": selected_dataset})
    if splits_resp.status_code == 200:
        split_names = []
        all_splits = splits_resp.json()
        for split in all_splits["splits"]:
            if split["config"] == selected_config:
                split_names.append(split["split"])

        selected_split = st.selectbox(
            "Select a split",
            split_names,
            index=split_names.index(metadata[0]["splits"]["eval_split"]) if metadata is not None else 0,
        )

    ## Select columns
    rows_resp = http_get(
        path="/rows",
        domain=DATASETS_PREVIEW_API,
        params={"dataset": selected_dataset, "config": selected_config, "split": selected_split},
    ).json()
    col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)

    st.markdown("**Map your data columns**")
    col1, col2 = st.columns(2)

    # TODO: find a better way to layout these items
    # TODO: need graceful way of handling dataset <--> task mismatch for datasets with metadata
    col_mapping = {}
    if selected_task in ["binary_classification", "multi_class_classification"]:
        with col1:
            st.markdown("`text` column")
            st.text("")
            st.text("")
            st.text("")
            st.text("")
            st.markdown("`target` column")
        with col2:
            text_col = st.selectbox(
                "This column should contain the text you want to classify",
                col_names,
                index=col_names.index(get_key(metadata[0]["col_mapping"], "text")) if metadata is not None else 0,
            )
            target_col = st.selectbox(
                "This column should contain the labels you want to assign to the text",
                col_names,
                index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
            )
            col_mapping[text_col] = "text"
            col_mapping[target_col] = "target"

    elif selected_task == "entity_extraction":
        with col1:
            st.markdown("`tokens` column")
            st.text("")
            st.text("")
            st.text("")
            st.text("")
            st.markdown("`tags` column")
        with col2:
            tokens_col = st.selectbox(
                "This column should contain the parts of the text (as an array of tokens) you want to assign labels to",
                col_names,
                index=col_names.index(get_key(metadata[0]["col_mapping"], "tokens")) if metadata is not None else 0,
            )
            tags_col = st.selectbox(
                "This column should contain the labels to associate to each part of the text",
                col_names,
                index=col_names.index(get_key(metadata[0]["col_mapping"], "tags")) if metadata is not None else 0,
            )
            col_mapping[tokens_col] = "tokens"
            col_mapping[tags_col] = "tags"

    elif selected_task == "translation":
        with col1:
            st.markdown("`source` column")
            st.text("")
            st.text("")
            st.text("")
            st.text("")
            st.markdown("`target` column")
        with col2:
            text_col = st.selectbox(
                "This column should contain the text you want to translate",
                col_names,
                index=col_names.index(get_key(metadata[0]["col_mapping"], "source")) if metadata is not None else 0,
            )
            target_col = st.selectbox(
                "This column should contain an example translation of the source text",
                col_names,
                index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
            )
            col_mapping[text_col] = "source"
            col_mapping[target_col] = "target"

    elif selected_task == "summarization":
        with col1:
            st.markdown("`text` column")
            st.text("")
            st.text("")
            st.text("")
            st.text("")
            st.markdown("`target` column")
        with col2:
            text_col = st.selectbox(
                "This column should contain the text you want to summarize",
                col_names,
                index=col_names.index(get_key(metadata[0]["col_mapping"], "text")) if metadata is not None else 0,
            )
            target_col = st.selectbox(
                "This column should contain an example summarization of the text",
                col_names,
                index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
            )
            col_mapping[text_col] = "text"
            col_mapping[target_col] = "target"

    elif selected_task == "extractive_question_answering":
        with col1:
            st.markdown("`context` column")
            st.text("")
            st.text("")
            st.text("")
            st.text("")
            st.markdown("`question` column")
            st.text("")
            st.text("")
            st.text("")
            st.text("")
            st.markdown("`answers.text` column")
            st.text("")
            st.text("")
            st.text("")
            st.text("")
            st.markdown("`answers.answer_start` column")
        with col2:
            context_col = st.selectbox(
                "This column should contain the question's context",
                col_names,
                index=col_names.index(get_key(metadata[0]["col_mapping"], "context")) if metadata is not None else 0,
            )
            question_col = st.selectbox(
                "This column should contain the question to be answered, given the context",
                col_names,
                index=col_names.index(get_key(metadata[0]["col_mapping"], "question")) if metadata is not None else 0,
            )
            answers_text_col = st.selectbox(
                "This column should contain example answers to the question, extracted from the context",
                col_names,
                index=col_names.index(get_key(metadata[0]["col_mapping"], "answers.text"))
                if metadata is not None
                else 0,
            )
            answers_start_col = st.selectbox(
                "This column should contain the indices in the context of the first character of each answers.text",
                col_names,
                index=col_names.index(get_key(metadata[0]["col_mapping"], "answers.answer_start"))
                if metadata is not None
                else 0,
            )
            col_mapping[context_col] = "context"
            col_mapping[question_col] = "question"
            col_mapping[answers_text_col] = "answers.text"
            col_mapping[answers_start_col] = "answers.answer_start"

with st.form(key="form"):

    compatible_models = get_compatible_models(selected_task, selected_dataset)

    selected_models = st.multiselect("Select the models you wish to evaluate", compatible_models)
    print("Selected models:", selected_models)
    submit_button = st.form_submit_button("Make submission")

    if submit_button:
        project_id = str(uuid.uuid4())[:3]
        payload = {
            "username": AUTOTRAIN_USERNAME,
            "proj_name": f"my-eval-project-{project_id}",
            "task": TASK_TO_ID[selected_task],
            "config": {
                "language": "en",
                "max_models": 5,
                "instance": {
                    "provider": "aws",
                    "instance_type": "ml.g4dn.4xlarge",
                    "max_runtime_seconds": 172800,
                    "num_instances": 1,
                    "disk_size_gb": 150,
                },
                "evaluation": {
                    "metrics": [],
                    "models": selected_models,
                },
            },
        }
        print(f"Payload: {payload}")
        project_json_resp = http_post(
            path="/projects/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
        ).json()
        print(project_json_resp)

        if project_json_resp["created"]:
            payload = {
                "split": 4,  # use "auto" split choice in AutoTrain
                "col_mapping": col_mapping,
                "load_config": {"max_size_bytes": 0, "shuffle": False},
            }
            data_json_resp = http_post(
                path=f"/projects/{project_json_resp['id']}/data/{selected_dataset}",
                payload=payload,
                token=HF_TOKEN,
                domain=AUTOTRAIN_BACKEND_API,
                params={"type": "dataset", "config_name": selected_config, "split_name": selected_split},
            ).json()
            print(data_json_resp)
            if data_json_resp["download_status"] == 1:
                train_json_resp = http_get(
                    path=f"/projects/{project_json_resp['id']}/data/start_process",
                    token=HF_TOKEN,
                    domain=AUTOTRAIN_BACKEND_API,
                ).json()
                print(train_json_resp)
                if train_json_resp["success"]:
                    st.success(f"βœ… Successfully submitted evaluation job with project ID {project_id}")
                    st.markdown(
                        f"""
                    Evaluation takes appoximately 1 hour to complete, so grab a β˜• or 🍡 while you wait:

                    * πŸ“Š Click [here](https://huggingface.co/spaces/autoevaluate/leaderboards) to view the results from your submission
                    """
                    )
                else:
                    st.error("πŸ™ˆ Oh noes, there was an error submitting your submission!")