Spaces:
Runtime error
Runtime error
File size: 30,182 Bytes
0ba78e9 580b4e4 0ba78e9 0d5e0f7 54f6b18 0ba78e9 0b46237 1e40fe5 0ba78e9 ef65795 0d5e0f7 79d85b6 675f890 0b46237 e502d68 2ed83bb 675f890 aacdddf d0649fc 675f890 0d5e0f7 0ba78e9 0d5e0f7 0ba78e9 6c14077 0d5e0f7 b36527b 294f139 b36527b 294f139 533bc81 294f139 1e7e407 10eada1 294f139 833c734 294f139 9bb22fc a16df4c 7b6efd3 a16df4c 533bc81 9bb22fc 1e7e407 72d11c4 fcdf4a0 833c734 9bb22fc fcdf4a0 d68b7d5 fcdf4a0 24b0def 5b19fc7 ef65795 9bb22fc 5b19fc7 0779c9b 31b9ddb daea199 da19d23 ef65795 b585c09 ef65795 9fd1031 e14de0c da19d23 294f139 daea199 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 |
import os
import time
from pathlib import Path
import pandas as pd
import streamlit as st
import yaml
from datasets import get_dataset_config_names
from dotenv import load_dotenv
from huggingface_hub import list_datasets
from evaluation import filter_evaluated_models
from utils import (
AUTOTRAIN_TASK_TO_HUB_TASK,
commit_evaluation_log,
create_autotrain_project_name,
format_col_mapping,
get_compatible_models,
get_config_metadata,
get_dataset_card_url,
get_key,
get_metadata,
http_get,
http_post,
)
if Path(".env").is_file():
load_dotenv(".env")
HF_TOKEN = os.getenv("HF_TOKEN")
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
DATASETS_PREVIEW_API = os.getenv("DATASETS_PREVIEW_API")
# Put image tasks on top
TASK_TO_ID = {
"image_binary_classification": 17,
"image_multi_class_classification": 18,
"binary_classification": 1,
"multi_class_classification": 2,
"natural_language_inference": 22,
"entity_extraction": 4,
"extractive_question_answering": 5,
"translation": 6,
"summarization": 8,
"text_zero_shot_classification": 23,
}
TASK_TO_DEFAULT_METRICS = {
"binary_classification": ["f1", "precision", "recall", "auc", "accuracy"],
"multi_class_classification": [
"f1",
"precision",
"recall",
"accuracy",
],
"natural_language_inference": ["f1", "precision", "recall", "auc", "accuracy"],
"entity_extraction": ["precision", "recall", "f1", "accuracy"],
"extractive_question_answering": ["f1", "exact_match"],
"translation": ["sacrebleu"],
"summarization": ["rouge1", "rouge2", "rougeL", "rougeLsum"],
"image_binary_classification": ["f1", "precision", "recall", "auc", "accuracy"],
"image_multi_class_classification": [
"f1",
"precision",
"recall",
"accuracy",
],
"text_zero_shot_classification": ["accuracy", "loss"],
}
AUTOTRAIN_TASK_TO_LANG = {
"translation": "en2de",
"image_binary_classification": "unk",
"image_multi_class_classification": "unk",
}
AUTOTRAIN_MACHINE = {"text_zero_shot_classification": "r5.16x"}
SUPPORTED_TASKS = list(TASK_TO_ID.keys())
# Extracted from utils.get_supported_metrics
# Hardcoded for now due to speed / caching constraints
SUPPORTED_METRICS = [
"accuracy",
"bertscore",
"bleu",
"cer",
"chrf",
"code_eval",
"comet",
"competition_math",
"coval",
"cuad",
"exact_match",
"f1",
"frugalscore",
"google_bleu",
"mae",
"mahalanobis",
"matthews_correlation",
"mean_iou",
"meteor",
"mse",
"pearsonr",
"perplexity",
"precision",
"recall",
"roc_auc",
"rouge",
"sacrebleu",
"sari",
"seqeval",
"spearmanr",
"squad",
"squad_v2",
"ter",
"trec_eval",
"wer",
"wiki_split",
"xnli",
"angelina-wang/directional_bias_amplification",
"jordyvl/ece",
"lvwerra/ai4code",
"lvwerra/amex",
]
#######
# APP #
#######
st.title("Evaluation on the Hub")
st.warning(
"**β οΈ This project has been archived. If you want to evaluate LLMs, checkout [this collection](https://huggingface.co/collections/clefourrier/llm-leaderboards-and-benchmarks-β¨-64f99d2e11e92ca5568a7cce) of leaderboards.**"
)
st.markdown(
"""
Welcome to Hugging Face's automatic model evaluator π!
This application allows you to evaluate π€ Transformers
[models](https://huggingface.co/models?library=transformers&sort=downloads)
across a wide variety of [datasets](https://huggingface.co/datasets) on the
Hub. Please select the dataset and configuration below. The results of your
evaluation will be displayed on the [public
leaderboards](https://huggingface.co/spaces/autoevaluate/leaderboards). For
more details, check out out our [blog
post](https://huggingface.co/blog/eval-on-the-hub).
"""
)
# all_datasets = [d.id for d in list_datasets()]
# query_params = st.experimental_get_query_params()
# if "first_query_params" not in st.session_state:
# st.session_state.first_query_params = query_params
# first_query_params = st.session_state.first_query_params
# default_dataset = all_datasets[0]
# if "dataset" in first_query_params:
# if len(first_query_params["dataset"]) > 0 and first_query_params["dataset"][0] in all_datasets:
# default_dataset = first_query_params["dataset"][0]
# selected_dataset = st.selectbox(
# "Select a dataset",
# all_datasets,
# index=all_datasets.index(default_dataset),
# help="""Datasets with metadata can be evaluated with 1-click. Configure an evaluation job to add \
# new metadata to a dataset card.""",
# )
# st.experimental_set_query_params(**{"dataset": [selected_dataset]})
# # Check if selected dataset can be streamed
# is_valid_dataset = http_get(
# path="/is-valid",
# domain=DATASETS_PREVIEW_API,
# params={"dataset": selected_dataset},
# ).json()
# if is_valid_dataset["viewer"] is False and is_valid_dataset["preview"] is False:
# st.error(
# """The dataset you selected is not currently supported. Open a \
# [discussion](https://huggingface.co/spaces/autoevaluate/model-evaluator/discussions) for support."""
# )
# metadata = get_metadata(selected_dataset, token=HF_TOKEN)
# print(f"INFO -- Dataset metadata: {metadata}")
# if metadata is None:
# st.warning("No evaluation metadata found. Please configure the evaluation job below.")
# with st.expander("Advanced configuration"):
# # Select task
# selected_task = st.selectbox(
# "Select a task",
# SUPPORTED_TASKS,
# index=SUPPORTED_TASKS.index(metadata[0]["task_id"]) if metadata is not None else 0,
# help="""Don't see your favourite task here? Open a \
# [discussion](https://huggingface.co/spaces/autoevaluate/model-evaluator/discussions) to request it!""",
# )
# # Select config
# configs = get_dataset_config_names(selected_dataset)
# selected_config = st.selectbox(
# "Select a config",
# configs,
# help="""Some datasets contain several sub-datasets, known as _configurations_. \
# Select one to evaluate your models on. \
# See the [docs](https://huggingface.co/docs/datasets/master/en/load_hub#configurations) for more details.
# """,
# )
# # Some datasets have multiple metadata (one per config), so we grab the one associated with the selected config
# config_metadata = get_config_metadata(selected_config, metadata)
# print(f"INFO -- Config metadata: {config_metadata}")
# # Select splits
# splits_resp = http_get(
# path="/splits",
# domain=DATASETS_PREVIEW_API,
# params={"dataset": selected_dataset},
# )
# if splits_resp.status_code == 200:
# split_names = []
# all_splits = splits_resp.json()
# for split in all_splits["splits"]:
# if split["config"] == selected_config:
# split_names.append(split["split"])
# if config_metadata is not None:
# eval_split = config_metadata["splits"].get("eval_split", None)
# else:
# eval_split = None
# selected_split = st.selectbox(
# "Select a split",
# split_names,
# index=split_names.index(eval_split) if eval_split is not None else 0,
# help="Be wary when evaluating models on the `train` split.",
# )
# # Select columns
# rows_resp = http_get(
# path="/first-rows",
# domain=DATASETS_PREVIEW_API,
# params={
# "dataset": selected_dataset,
# "config": selected_config,
# "split": selected_split,
# },
# ).json()
# col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)
# st.markdown("**Map your dataset columns**")
# st.markdown(
# """The model evaluator uses a standardised set of column names for the input examples and labels. \
# Please define the mapping between your dataset columns (right) and the standardised column names (left)."""
# )
# col1, col2 = st.columns(2)
# # TODO: find a better way to layout these items
# # TODO: need graceful way of handling dataset <--> task mismatch for datasets with metadata
# col_mapping = {}
# if selected_task in ["binary_classification", "multi_class_classification"]:
# with col1:
# st.markdown("`text` column")
# st.text("")
# st.text("")
# st.text("")
# st.text("")
# st.markdown("`target` column")
# with col2:
# text_col = st.selectbox(
# "This column should contain the text to be classified",
# col_names,
# index=col_names.index(get_key(config_metadata["col_mapping"], "text"))
# if config_metadata is not None
# else 0,
# )
# target_col = st.selectbox(
# "This column should contain the labels associated with the text",
# col_names,
# index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
# if config_metadata is not None
# else 0,
# )
# col_mapping[text_col] = "text"
# col_mapping[target_col] = "target"
# elif selected_task == "text_zero_shot_classification":
# with col1:
# st.markdown("`text` column")
# st.text("")
# st.text("")
# st.text("")
# st.text("")
# st.markdown("`classes` column")
# st.text("")
# st.text("")
# st.text("")
# st.text("")
# st.markdown("`target` column")
# with col2:
# text_col = st.selectbox(
# "This column should contain the text to be classified",
# col_names,
# index=col_names.index(get_key(config_metadata["col_mapping"], "text"))
# if config_metadata is not None
# else 0,
# )
# classes_col = st.selectbox(
# "This column should contain the classes associated with the text",
# col_names,
# index=col_names.index(get_key(config_metadata["col_mapping"], "classes"))
# if config_metadata is not None
# else 0,
# )
# target_col = st.selectbox(
# "This column should contain the index of the correct class",
# col_names,
# index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
# if config_metadata is not None
# else 0,
# )
# col_mapping[text_col] = "text"
# col_mapping[classes_col] = "classes"
# col_mapping[target_col] = "target"
# if selected_task in ["natural_language_inference"]:
# config_metadata = get_config_metadata(selected_config, metadata)
# with col1:
# st.markdown("`text1` column")
# st.text("")
# st.text("")
# st.text("")
# st.text("")
# st.text("")
# st.markdown("`text2` column")
# st.text("")
# st.text("")
# st.text("")
# st.text("")
# st.text("")
# st.markdown("`target` column")
# with col2:
# text1_col = st.selectbox(
# "This column should contain the first text passage to be classified",
# col_names,
# index=col_names.index(get_key(config_metadata["col_mapping"], "text1"))
# if config_metadata is not None
# else 0,
# )
# text2_col = st.selectbox(
# "This column should contain the second text passage to be classified",
# col_names,
# index=col_names.index(get_key(config_metadata["col_mapping"], "text2"))
# if config_metadata is not None
# else 0,
# )
# target_col = st.selectbox(
# "This column should contain the labels associated with the text",
# col_names,
# index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
# if config_metadata is not None
# else 0,
# )
# col_mapping[text1_col] = "text1"
# col_mapping[text2_col] = "text2"
# col_mapping[target_col] = "target"
# elif selected_task == "entity_extraction":
# with col1:
# st.markdown("`tokens` column")
# st.text("")
# st.text("")
# st.text("")
# st.text("")
# st.markdown("`tags` column")
# with col2:
# tokens_col = st.selectbox(
# "This column should contain the array of tokens to be classified",
# col_names,
# index=col_names.index(get_key(config_metadata["col_mapping"], "tokens"))
# if config_metadata is not None
# else 0,
# )
# tags_col = st.selectbox(
# "This column should contain the labels associated with each part of the text",
# col_names,
# index=col_names.index(get_key(config_metadata["col_mapping"], "tags"))
# if config_metadata is not None
# else 0,
# )
# col_mapping[tokens_col] = "tokens"
# col_mapping[tags_col] = "tags"
# elif selected_task == "translation":
# with col1:
# st.markdown("`source` column")
# st.text("")
# st.text("")
# st.text("")
# st.text("")
# st.markdown("`target` column")
# with col2:
# text_col = st.selectbox(
# "This column should contain the text to be translated",
# col_names,
# index=col_names.index(get_key(config_metadata["col_mapping"], "source"))
# if config_metadata is not None
# else 0,
# )
# target_col = st.selectbox(
# "This column should contain the target translation",
# col_names,
# index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
# if config_metadata is not None
# else 0,
# )
# col_mapping[text_col] = "source"
# col_mapping[target_col] = "target"
# elif selected_task == "summarization":
# with col1:
# st.markdown("`text` column")
# st.text("")
# st.text("")
# st.text("")
# st.text("")
# st.markdown("`target` column")
# with col2:
# text_col = st.selectbox(
# "This column should contain the text to be summarized",
# col_names,
# index=col_names.index(get_key(config_metadata["col_mapping"], "text"))
# if config_metadata is not None
# else 0,
# )
# target_col = st.selectbox(
# "This column should contain the target summary",
# col_names,
# index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
# if config_metadata is not None
# else 0,
# )
# col_mapping[text_col] = "text"
# col_mapping[target_col] = "target"
# elif selected_task == "extractive_question_answering":
# if config_metadata is not None:
# col_mapping = config_metadata["col_mapping"]
# # Hub YAML parser converts periods to hyphens, so we remap them here
# col_mapping = format_col_mapping(col_mapping)
# with col1:
# st.markdown("`context` column")
# st.text("")
# st.text("")
# st.text("")
# st.text("")
# st.markdown("`question` column")
# st.text("")
# st.text("")
# st.text("")
# st.text("")
# st.markdown("`answers.text` column")
# st.text("")
# st.text("")
# st.text("")
# st.text("")
# st.markdown("`answers.answer_start` column")
# with col2:
# context_col = st.selectbox(
# "This column should contain the question's context",
# col_names,
# index=col_names.index(get_key(col_mapping, "context")) if config_metadata is not None else 0,
# )
# question_col = st.selectbox(
# "This column should contain the question to be answered, given the context",
# col_names,
# index=col_names.index(get_key(col_mapping, "question")) if config_metadata is not None else 0,
# )
# answers_text_col = st.selectbox(
# "This column should contain example answers to the question, extracted from the context",
# col_names,
# index=col_names.index(get_key(col_mapping, "answers.text")) if config_metadata is not None else 0,
# )
# answers_start_col = st.selectbox(
# "This column should contain the indices in the context of the first character of each `answers.text`",
# col_names,
# index=col_names.index(get_key(col_mapping, "answers.answer_start"))
# if config_metadata is not None
# else 0,
# )
# col_mapping[context_col] = "context"
# col_mapping[question_col] = "question"
# col_mapping[answers_text_col] = "answers.text"
# col_mapping[answers_start_col] = "answers.answer_start"
# elif selected_task in ["image_binary_classification", "image_multi_class_classification"]:
# with col1:
# st.markdown("`image` column")
# st.text("")
# st.text("")
# st.text("")
# st.text("")
# st.markdown("`target` column")
# with col2:
# image_col = st.selectbox(
# "This column should contain the images to be classified",
# col_names,
# index=col_names.index(get_key(config_metadata["col_mapping"], "image"))
# if config_metadata is not None
# else 0,
# )
# target_col = st.selectbox(
# "This column should contain the labels associated with the images",
# col_names,
# index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
# if config_metadata is not None
# else 0,
# )
# col_mapping[image_col] = "image"
# col_mapping[target_col] = "target"
# # Select metrics
# st.markdown("**Select metrics**")
# st.markdown("The following metrics will be computed")
# html_string = " ".join(
# [
# '<div style="padding-right:5px;padding-left:5px;padding-top:5px;padding-bottom:5px;float:left">'
# + '<div style="background-color:#D3D3D3;border-radius:5px;display:inline-block;padding-right:5px;'
# + 'padding-left:5px;color:white">'
# + metric
# + "</div></div>"
# for metric in TASK_TO_DEFAULT_METRICS[selected_task]
# ]
# )
# st.markdown(html_string, unsafe_allow_html=True)
# selected_metrics = st.multiselect(
# "(Optional) Select additional metrics",
# sorted(list(set(SUPPORTED_METRICS) - set(TASK_TO_DEFAULT_METRICS[selected_task]))),
# help="""User-selected metrics will be computed with their default arguments. \
# For example, `f1` will report results for binary labels. \
# Check out the [available metrics](https://huggingface.co/metrics) for more details.""",
# )
# with st.form(key="form"):
# compatible_models = get_compatible_models(selected_task, [selected_dataset])
# selected_models = st.multiselect(
# "Select the models you wish to evaluate",
# compatible_models,
# help="""Don't see your favourite model in this list? Add the dataset and task it was trained on to the \
# [model card metadata.](https://huggingface.co/docs/hub/models-cards#model-card-metadata)""",
# )
# print("INFO -- Selected models before filter:", selected_models)
# hf_username = st.text_input("Enter your π€ Hub username to be notified when the evaluation is finished")
# submit_button = st.form_submit_button("Evaluate models π")
# if submit_button:
# if len(hf_username) == 0:
# st.warning("No π€ Hub username provided! Please enter your username and try again.")
# elif len(selected_models) == 0:
# st.warning("β οΈ No models were selected for evaluation! Please select at least one model and try again.")
# elif len(selected_models) > 10:
# st.warning("Only 10 models can be evaluated at once. Please select fewer models and try again.")
# else:
# # Filter out previously evaluated models
# selected_models = filter_evaluated_models(
# selected_models,
# selected_task,
# selected_dataset,
# selected_config,
# selected_split,
# selected_metrics,
# )
# print("INFO -- Selected models after filter:", selected_models)
# if len(selected_models) > 0:
# project_payload = {
# "username": AUTOTRAIN_USERNAME,
# "proj_name": create_autotrain_project_name(selected_dataset, selected_config),
# "task": TASK_TO_ID[selected_task],
# "config": {
# "language": AUTOTRAIN_TASK_TO_LANG[selected_task]
# if selected_task in AUTOTRAIN_TASK_TO_LANG
# else "en",
# "max_models": 5,
# "instance": {
# "provider": "sagemaker" if selected_task in AUTOTRAIN_MACHINE.keys() else "ovh",
# "instance_type": AUTOTRAIN_MACHINE[selected_task]
# if selected_task in AUTOTRAIN_MACHINE.keys()
# else "p3",
# "max_runtime_seconds": 172800,
# "num_instances": 1,
# "disk_size_gb": 200,
# },
# "evaluation": {
# "metrics": selected_metrics,
# "models": selected_models,
# "hf_username": hf_username,
# },
# },
# }
# print(f"INFO -- Payload: {project_payload}")
# project_json_resp = http_post(
# path="/projects/create",
# payload=project_payload,
# token=HF_TOKEN,
# domain=AUTOTRAIN_BACKEND_API,
# ).json()
# print(f"INFO -- Project creation response: {project_json_resp}")
# if project_json_resp["created"]:
# data_payload = {
# "split": 4, # use "auto" split choice in AutoTrain
# "col_mapping": col_mapping,
# "load_config": {"max_size_bytes": 0, "shuffle": False},
# "dataset_id": selected_dataset,
# "dataset_config": selected_config,
# "dataset_split": selected_split,
# }
# data_json_resp = http_post(
# path=f"/projects/{project_json_resp['id']}/data/dataset",
# payload=data_payload,
# token=HF_TOKEN,
# domain=AUTOTRAIN_BACKEND_API,
# ).json()
# print(f"INFO -- Dataset creation response: {data_json_resp}")
# if data_json_resp["download_status"] == 1:
# train_json_resp = http_post(
# path=f"/projects/{project_json_resp['id']}/data/start_processing",
# token=HF_TOKEN,
# domain=AUTOTRAIN_BACKEND_API,
# ).json()
# # For local development we process and approve projects on-the-fly
# if "localhost" in AUTOTRAIN_BACKEND_API:
# with st.spinner("β³ Waiting for data processing to complete ..."):
# is_data_processing_success = False
# while is_data_processing_success is not True:
# project_status = http_get(
# path=f"/projects/{project_json_resp['id']}",
# token=HF_TOKEN,
# domain=AUTOTRAIN_BACKEND_API,
# ).json()
# if project_status["status"] == 3:
# is_data_processing_success = True
# time.sleep(10)
# # Approve training job
# train_job_resp = http_post(
# path=f"/projects/{project_json_resp['id']}/start_training",
# token=HF_TOKEN,
# domain=AUTOTRAIN_BACKEND_API,
# ).json()
# st.success("β
Data processing and project approval complete - go forth and evaluate!")
# else:
# # Prod/staging submissions are evaluated in a cron job via run_evaluation_jobs.py
# print(f"INFO -- AutoTrain job response: {train_json_resp}")
# if train_json_resp["success"]:
# train_eval_index = {
# "train-eval-index": [
# {
# "config": selected_config,
# "task": AUTOTRAIN_TASK_TO_HUB_TASK[selected_task],
# "task_id": selected_task,
# "splits": {"eval_split": selected_split},
# "col_mapping": col_mapping,
# }
# ]
# }
# selected_metadata = yaml.dump(train_eval_index, sort_keys=False)
# dataset_card_url = get_dataset_card_url(selected_dataset)
# st.success("β
Successfully submitted evaluation job!")
# st.markdown(
# f"""
# Evaluation can take up to 1 hour to complete, so grab a βοΈ or π΅ while you wait:
# * π A [Hub pull request](https://huggingface.co/docs/hub/repositories-pull-requests-discussions) with the evaluation results will be opened for each model you selected. Check your email for notifications.
# * π Click [here](https://hf.co/spaces/autoevaluate/leaderboards?dataset={selected_dataset}) to view the results from your submission once the Hub pull request is merged.
# * π₯± Tired of configuring evaluations? Add the following metadata to the [dataset card]({dataset_card_url}) to enable 1-click evaluations:
# """ # noqa
# )
# st.markdown(
# f"""
# ```yaml
# {selected_metadata}
# """
# )
# print("INFO -- Pushing evaluation job logs to the Hub")
# evaluation_log = {}
# evaluation_log["project_id"] = project_json_resp["id"]
# evaluation_log["autotrain_env"] = (
# "staging" if "staging" in AUTOTRAIN_BACKEND_API else "prod"
# )
# evaluation_log["payload"] = project_payload
# evaluation_log["project_creation_response"] = project_json_resp
# evaluation_log["dataset_creation_response"] = data_json_resp
# evaluation_log["autotrain_job_response"] = train_json_resp
# commit_evaluation_log(evaluation_log, hf_access_token=HF_TOKEN)
# else:
# st.error("π Oh no, there was an error submitting your evaluation job!")
# else:
# st.warning("β οΈ No models left to evaluate! Please select other models and try again.")
|