File size: 9,107 Bytes
8158335
 
 
 
 
 
 
 
eeaff04
 
 
8158335
 
 
 
 
 
 
 
 
 
 
 
 
eeaff04
1cac62c
eeaff04
8158335
 
9191bf8
8158335
 
 
 
 
9191bf8
8158335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fedc073
8158335
2ff2948
 
8158335
 
 
 
0e806c4
2ff2948
 
 
 
 
 
1cac62c
8158335
1cac62c
8158335
1cac62c
 
eeaff04
1cac62c
 
 
 
 
eeaff04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8158335
eeaff04
 
8158335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d2a165
8158335
7d2a165
8158335
9191bf8
 
5d83b09
 
 
 
 
 
 
 
8158335
 
 
9191bf8
 
 
8feb899
 
 
 
 
 
 
 
 
 
9191bf8
 
d4f732b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ff2948
9191bf8
 
 
 
 
 
2ff2948
9191bf8
 
 
 
 
8158335
2ff2948
8158335
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
"""FastAPI endpoint
To run locally use 'uvicorn app:app --host localhost --port 7860'
or
`python -m uvicorn app:app --reload --host localhost --port 7860`
"""
import datetime as dt
import json
import logging
import sys
#sys.setrecursionlimit(20000)
import pandas as pd
import numpy as np
import os
import random
from typing import Dict, List

import uvicorn
from fastapi import FastAPI, HTTPException, Request, Response
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates

import scripts.sentiment as sentiment
import scripts.twitter_scraper as ts
from scripts.summarization import bert_summarization
from scripts.twitter_scraper import get_latest_account_tweets
from scripts import twitter_scraper as ts 
import scripts.utils as utils
from scripts import generative
import nltk
logging.basicConfig(level=logging.INFO)

app = FastAPI()
templates = Jinja2Templates(directory="templates")
app.mount("/static", StaticFiles(directory="static"), name="static")

# Construct absolute path to models folder
models_path = os.path.abspath("models")

username_list = [
    "alikarimi_ak8",
    "elonmusk",
    "BarackObama",
    "taylorlorenz",
    "cathiedwood",
    "ylecun",
]

## Static objects/paths
start_date = dt.date(year=2023, month=2, day=1)
end_date = dt.date(year=2023, month=3, day=22)


@app.get("/", response_class=HTMLResponse)
async def webpage(request: Request):
    return templates.TemplateResponse("index.html", {"request": request})


@app.get("/accounts")
def get_accounts() -> List[dict]:
    import pandas as pd

    logging.info(f"Pulling account information on {username_list}")
    account_info_list = [
        ts.get_twitter_account_info(twitter_handle=account) for account in username_list
    ]
    df_account = pd.DataFrame(account_info_list)
    df_account = df_account.style.bar(
        subset=["follower_count", "friends_count"], color="#d65f5f"
    )
    df_account = df_account.format(
        {"follower_count": "{:,.0f}", "friends_count": "{:,.0f}"}
    )
    html_table = df_account.to_html(classes="center", index=False)

    return HTMLResponse(content=html_table, status_code=200)


@app.get("/tweets/{username}")
def get_tweets_username(username: str) -> dict:
    # if username in username_list:
    #     query = f"from:{username} since:{start_date} until:{end_date}"
    #     return ts.get_tweets(query=query)
    # else:
    #     return {"detail": "Account not in scope of project."}

    # Method 1: Using Tweepy method
    # df_tweets = get_latest_account_tweets(username)

    # Method 2: Use Snscrape
    df_tweets = ts.get_tweets(handle=username)

    if isinstance(df_tweets, pd.DataFrame):
        print(df_tweets.head(2))
        print(df_tweets.shape)
        df_tweets = df_tweets[["handle", "created_at", "full_text"]]
        df_tweets = df_tweets.sort_values("created_at", ascending=True).tail(10)
        df_tweets_html = df_tweets.to_html(classes="center", index=False)

        return HTMLResponse(content=df_tweets_html, status_code=200)
    else:
        print("Error: Failed to retrieve tweets.")
        return df_tweets


@app.get("/audience/{username}", response_model=dict)
def get_audience(username: str) -> dict:
    if username in username_list:
        query = f"from:{username} since:{start_date} until:{end_date}"
        tweets = ts.get_tweets(query=query)

        n_samples = 5
        # Random sample 3 tweets from user
        tweets_sampled = random.sample(tweets, n_samples)

        # Get all replies to sampled tweets
        tweet_threads = []
        for tweet in tweets_sampled:
            threads = ts.get_replies(
                username=tweet["username"],
                conversation_id=tweet["conversation_id"],
                max_tweets=100,
            )
            tweet_threads += threads

        # Get usernames from sample threads tweets
        usernames = [t["username"] for t in tweet_threads]
        # Get user info from sample replies to sampled tweets of user
        info_accounts = [
            ts.get_twitter_account_info(twitter_handle=account) for account in usernames
        ]

        # "follower_count":1,"friends_count":20,"verified":false}
        # Get stats for followers/audience engaging with tweets
        follower_counts = [
            info_accounts[i]["follower_count"] for i in range(len(info_accounts))
        ]
        friends_counts = [
            info_accounts[i]["friends_count"] for i in range(len(info_accounts))
        ]
        verified_counts = [
            1 if info_accounts[i]["verified"] == True else 0
            for i in range(len(info_accounts))
        ]
        return {
            "sample_size": len(info_accounts),
            "mean_follower_count": round(np.mean(follower_counts), 3),
            "mean_friends_count": round(np.mean(friends_counts), 3),
            "mean_verified": round(np.mean(verified_counts), 3),
        }
    else:
        response = Response(content="Account not in scope of project.", status_code=404)
        return response


@app.get("/sentiment/{username}")
async def get_sentiment(username: str) -> Dict[str, Dict[str, float]]:
    if username not in username_list:
        raise HTTPException(status_code=404, detail="Account not in scope of project.")

    query = f"from:{username} since:{start_date} until:{end_date}"
    tweets = ts.get_tweets(query=query)
    n_samples = 5
    tweets_sampled = random.sample(tweets, n_samples)

    tweet_threads = []
    for tweet in tweets_sampled:
        threads = ts.get_replies(
            username=tweet["username"],
            conversation_id=tweet["conversation_id"],
            max_tweets=100,
        )
        tweet_threads += threads

    print(
        f"Total replies to {n_samples} sampled tweets from username: {username}, {len(tweet_threads)}"
    )

    ## Sentiment scoring
    print(f"Running tweet sentiment scoring on username: {username} tweets")
    tweets_scores = sentiment.get_tweets_sentiment(tweets=tweets)
    mean_tweets_score = round(np.mean(tweets_scores), 2)
    ci_tweets = utils.wilson_score_interval(tweets_scores)

    # Get sentiment of the threads from tweets
    # Get username tweets sentiment
    print(f"Running tweet thread sentiment scoring on username: {username} tweets")
    threads_scores = sentiment.get_tweets_sentiment(tweets=tweet_threads)
    mean_threads_score = round(np.mean(threads_scores), 2)
    ci_threads = utils.wilson_score_interval(threads_scores)

    return {
        "thread_level": {
            "mean": mean_threads_score,
            "confidence_interal": ci_threads,
        },
        "audience_level": {
            "mean": mean_tweets_score,
            "confidence_interval": ci_tweets,
        },
    }


@app.post("/api/generate")
async def generate_text(request: Request):
    print("*" * 50)
    data = await request.json()
    print("*" * 50)
    print("POST Request:")

    # Check length of input, if it is greater than 10 tokens, the text is sent off to a summarizer to generate:
    try:
        generated_text = generative.generate_account_text(
            prompt=data["text"], model_dir=os.path.join(models_path, data["account"])
        )
        logging.info("INFO: Successfully generate text from model.")
    except Exception as e:
        logging.error(f"Error generating text: {e}")
        return {"error": "Error generating text"}
    # return one example
    generated_text = generated_text[0]["generated_text"]

    ###################################################
    ## Clean up generate text
    # Get rid of final sentence
    # sentences = nltk.sent_tokenize(generated_text)
    # unique_sentences = set()
    # non_duplicate_sentences = []
    # for sentence in sentences:
    #     if sentence not in unique_sentences:
    #         non_duplicate_sentences.append(sentence)
    #         unique_sentences.add(sentence)
    # final_text = " ".join(non_duplicate_sentences[:-1])

    final_text= generated_text
    return {"generated_text": final_text}

@app.post("/api/generate_summary")
async def generate_summary(request: Request):
    """Generate summary from tweets

    Args:
        request: The HTTP request.

    Returns:
        The generated text.
    """

    print("*" * 50)
    data = await request.json()

    # Get the list of text
    texts = data["text"]


    # Generate the summary
    summary = "This is a placeholder for summary model being returned"

    # Return the summary
    return {"summary": summary}


@app.get("/examples1")
async def read_examples():
    with open("templates/charts/handle_sentiment_breakdown.html") as f:
        html = f.read()
    return HTMLResponse(content=html)


@app.get("/examples2")
async def read_examples():
    with open("templates/charts/handle_sentiment_timesteps.html") as f:
        html = f.read()
    return HTMLResponse(content=html)

# uvicorn --workers=2 app:app
# if __name__ == "__main__":
#     # uvicorn.run(app, host="0.0.0.0", port=8000)
#     uvicorn.run("app:app", host="127.0.0.1", port=5049, reload=True)