File size: 2,831 Bytes
f3b0ffc
 
 
 
 
 
 
 
 
23ed361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3b0ffc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23ed361
f3b0ffc
 
 
 
 
 
 
649e72e
 
f3b0ffc
 
 
 
 
 
 
 
 
 
 
 
 
8a93bca
250bb3e
 
31edfa9
203a8ab
f3b0ffc
 
 
 
 
203a8ab
8a93bca
f3b0ffc
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import os

import gradio as gr
import numpy as np
import torch
from groq import Groq
from transformers import pipeline
from TTS.api import TTS

MODEL_NAME = "openai/whisper-large-v3"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600  # limit to 1 hour YouTube files

device = 0 if torch.cuda.is_available() else "cpu"

pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)


def use_pipe(inputs):
    if inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")

    text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
    return  text


groq_client = Groq(api_key=os.getenv('GROQ_API_KEY'))

def transcribe(stream, new_chunk):
    """
    Transcribes using whisper
    """
    sr, y = new_chunk

    # Convert stereo to mono if necessary
    if y.ndim == 2 and y.shape[1] == 2:
        y = y.mean(axis=1)  # Averaging both channels if stereo
    
    y = y.astype(np.float32)

    # Normalization
    y /= np.max(np.abs(y))

    if stream is not None:
        stream = np.concatenate([stream, y])
    else:
        stream = y
    return stream, use_pipe(stream)

def autocomplete(text):
    """
    Autocomplete the text using Gemma.
    """
    if text != "":
        response = groq_client.chat.completions.create(
            model='llama3-8b-8192',
            messages=[{"role": "system", "content": "Tu es une assistante tres polis, tu ne repond que en francais et uniquement en utilisant le vous et jamais le tu"},
                      {"role": "user", "content": text}]
            )
            
        return response.choices[0].message.content

def process_audio(input_audio, new_chunk):
    """
    Process the audio input by transcribing and completing the sentences.
    Accumulate results to return to Gradio interface.
    """

    stream, transcription = transcribe(input_audio, new_chunk)
    text = autocomplete(transcription)
    print (transcription, text)
    api = TTS("tts_models/multilingual/multi-dataset/xtts_v2", gpu=True)
    api.tts_to_file(text, file_path="output.wav", speaker="Ana Florence",language="fr", split_sentences=True)
    audio = "./output.wav"
    return stream, text, audio


demo = gr.Interface(
    fn = process_audio,
    inputs = ["state", gr.Audio(sources=["microphone"], streaming=True)],
    outputs = ["state", gr.Markdown(), gr.Audio(interactive=False, autoplay=True)],
    title="Parlons nous ☎️",
    description="Powered by [whisper-base-en](https://huggingface.co/openai/whisper-base.en), and [gemma-7b-it](https://huggingface.co/google/gemma-7b-it) (via [Groq](https://groq.com/))",
    live=True,
    allow_flagging="never"
)

demo.launch()