File size: 709 Bytes
7eae05a
b30eef8
0ec08ae
 
b30eef8
0ec08ae
b30eef8
 
 
 
 
 
0ec08ae
 
 
 
 
 
 
 
b30eef8
 
0ec08ae
 
 
a810472
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import torch
import requests
from PIL import Image
from torchvision import transforms

model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()


# Download human-readable labels for ImageNet.
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")

def predict(inp):
  inp = transforms.ToTensor()(inp).unsqueeze(0)
  with torch.no_grad():
    prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
    confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
  return confidences
    
import gradio as gr


gr.Interface(fn=predict,
             inputs=gr.Image(type="pil"),
             outputs=gr.Label(num_top_classes=3),
).launch()