File size: 19,123 Bytes
e0f0baf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07ebc68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0f0baf
 
 
07ebc68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0f0baf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f577a3
07ebc68
e0f0baf
07ebc68
e0f0baf
07ebc68
e0f0baf
 
07ebc68
 
 
6f577a3
07ebc68
e0f0baf
07ebc68
e0f0baf
 
6f577a3
07ebc68
 
 
 
 
 
6f577a3
07ebc68
e0f0baf
 
 
 
 
 
 
07ebc68
e0f0baf
 
 
 
 
 
07ebc68
e0f0baf
07ebc68
 
e0f0baf
 
07ebc68
e0f0baf
 
 
 
07ebc68
e0f0baf
 
 
 
07ebc68
e0f0baf
 
07ebc68
e0f0baf
 
 
 
07ebc68
e0f0baf
 
 
 
07ebc68
e0f0baf
07ebc68
e0f0baf
07ebc68
e0f0baf
 
 
 
07ebc68
e0f0baf
 
 
 
 
 
 
 
07ebc68
 
 
 
6f577a3
07ebc68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0f0baf
07ebc68
 
 
 
e0f0baf
07ebc68
 
 
 
 
 
 
e0f0baf
07ebc68
 
 
 
e0f0baf
07ebc68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0f0baf
 
 
 
 
 
 
 
 
 
07ebc68
 
e0f0baf
 
 
07ebc68
e0f0baf
 
 
 
 
 
07ebc68
e0f0baf
 
07ebc68
e0f0baf
07ebc68
e0f0baf
 
07ebc68
e0f0baf
 
 
 
 
 
 
 
07ebc68
e0f0baf
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
import gradio as gr
import torch.nn as nn
import audresample
import matplotlib.pyplot as plt
from matplotlib import colors as mcolors
import torch
import librosa
import numpy as np
import types
from transformers import AutoModelForAudioClassification
from transformers.models.wav2vec2.modeling_wav2vec2 import (Wav2Vec2Model,
                                                  Wav2Vec2PreTrainedModel)


plt.style.use('seaborn-v0_8-whitegrid')




class ADV(nn.Module):

    def __init__(self, config):

        super().__init__()

        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, x):

        x = self.dense(x)
        x = torch.tanh(x)

        return self.out_proj(x)


class Dawn(Wav2Vec2PreTrainedModel):
    r"""https://arxiv.org/abs/2203.07378"""

    def __init__(self, config):

        super().__init__(config)

        self.wav2vec2 = Wav2Vec2Model(config)
        self.classifier = ADV(config)

    def forward(self, x):
        x -= x.mean(1, keepdim=True)
        variance = (x * x).mean(1, keepdim=True) + 1e-7
        x = self.wav2vec2(x / variance.sqrt())
        return self.classifier(x.last_hidden_state.mean(1))


def _forward(self, x):
    '''x: (batch, audio-samples-16KHz)'''
    x = (x + self.config.mean) / self.config.std  # sgn
    x = self.ssl_model(x, attention_mask=None).last_hidden_state
    # pool
    h = self.pool_model.sap_linear(x).tanh()
    w = torch.matmul(h, self.pool_model.attention).softmax(1)
    mu = (x * w).sum(1)
    x = torch.cat(
        [
            mu,
            ((x * x * w).sum(1) - mu * mu).clamp(min=1e-7).sqrt()
        ], 1)
    return self.ser_model(x)


# WavLM
device = 'cpu'
base = AutoModelForAudioClassification.from_pretrained(
        '3loi/SER-Odyssey-Baseline-WavLM-Multi-Attributes',
        trust_remote_code=True).to(device).eval()
base.forward = types.MethodType(_forward, base)

# Wav2Vec2

dawn = Dawn.from_pretrained(
    'audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim'
).to(device).eval()



# Wav2Small



import torch
import numpy as np
import torch.nn.functional as F
import librosa
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel, Wav2Vec2Model
from torch import nn
from transformers import PretrainedConfig


def _prenorm(x, attention_mask=None):
    '''mean/var'''
    if attention_mask is not None:
        N = attention_mask.sum(1, keepdim=True)  # here attn msk is unprocessed just the original input
        x -= x.sum(1, keepdim=True) / N
        var = (x * x).sum(1, keepdim=True) / N

    else:
        x -= x.mean(1, keepdim=True)  # mean is an onnx operator reducemean saves some ops compared to casting integer N to float and the div
        var = (x * x).mean(1, keepdim=True)
    return x / torch.sqrt(var + 1e-7)




class Spectrogram(nn.Module):
    def __init__(self,
        n_fft=64,   # num cols of DFT
        n_time=64,  # num rows of DFT matrix
        hop_length=32,
        freeze_parameters=True):


        super().__init__()

        fft_window = librosa.filters.get_window('hann', n_time, fftbins=True)

        fft_window = librosa.util.pad_center(fft_window, size=n_time)

        
        
        

        out_channels = n_fft // 2 + 1
        
        (x, y) = np.meshgrid(np.arange(n_time), np.arange(n_fft))
        omega = np.exp(-2 * np.pi * 1j / n_time)
        dft_matrix = np.power(omega, x * y)  # (n_fft, n_time)
        dft_matrix = dft_matrix * fft_window[None, :]
        dft_matrix = dft_matrix[0 : out_channels, :]
        dft_matrix = dft_matrix[:, None, :]
        
        # ---- Assymetric DFT Non Square

        self.conv_real = nn.Conv1d(1, out_channels, n_fft, stride=hop_length, padding=0, bias=False)
        self.conv_imag = nn.Conv1d(1, out_channels, n_fft, stride=hop_length, padding=0, bias=False)
        self.conv_real.weight.data = torch.tensor(np.real(dft_matrix), dtype=self.conv_real.weight.dtype).to(self.conv_real.weight.device)
        self.conv_imag.weight.data = torch.tensor(np.imag(dft_matrix), dtype=self.conv_imag.weight.dtype).to(self.conv_imag.weight.device)
        if freeze_parameters:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, input):
        x = input[:, None, :]

        real = self.conv_real(x)
        imag = self.conv_imag(x)
        return real ** 2 + imag ** 2  # bs, mel, time-frames


class LogmelFilterBank(nn.Module):
    def __init__(self,
                 sr=16000,
                 n_fft=64,
                 n_mels=26,  # maxpool
                 fmin=0.0,
                 freeze_parameters=True):

        super().__init__()

        fmax = sr//2

        W2 = librosa.filters.mel(sr=sr,
                                        n_fft=n_fft,
                                        n_mels=n_mels,
                                        fmin=fmin,
                                        fmax=fmax).T

        self.register_buffer('melW', torch.Tensor(W2))
        self.register_buffer('amin', torch.Tensor([1e-10]))

    def forward(self, x):

        x = torch.matmul(x[:, None, :, :].transpose(2, 3), self.melW)   # changes melf not num frames

        x = torch.where(x > self.amin, x, self.amin)  # not in place

        x = 10 * torch.log10(x)
        return x





def length_after_conv_layer(_length, k=None, pad=None, stride=None):
        return torch.floor( (_length + 2*pad - k) / stride + 1 )






class Conv(nn.Module):

    def __init__(self, c_in, c_out, k=3, stride=1, padding=1):

        super().__init__()

        self.conv = nn.Conv2d(c_in, c_out, k, stride=stride, padding=padding, bias=False)
        self.norm = nn.BatchNorm2d(c_out)

    def forward(self, x):
        x = self.conv(x)
        x = self.norm(x)
        return torch.relu_(x)





class Vgg7(nn.Module):

    def __init__(self):

        super().__init__()

        self.l1 = Conv( 1, 13)
        self.l2 = Conv(13, 13)
        self.l3 = Conv(13, 13)
        self.maxpool_A = nn.MaxPool2d(3,
                                      stride=2,
                                      padding=1)
        self.l4 = Conv(13, 13)
        self.l5 = Conv(13, 13)
        self.l6 = Conv(13, 13)
        self.l7 = Conv(13, 13)
        self.lin = nn.Conv2d(13, 13, 1, padding=0, stride=1)
        self.sof = nn.Conv2d(13, 13, 1, padding=0, stride=1)  # pool time - reshape mel into channels after pooling
        self.spectrogram_extractor = Spectrogram()
        self.logmel_extractor = LogmelFilterBank()

    def final_length(self, L):
            conv_kernel = [64, 3]  # [nfft, maxpool]
            conv_stride = [32, 2]  # [hop_len, maxpool_stride]    # consider only layers of stride > 1
            conv_pad =    [0,  1]   # [pad_stft, pad_maxpool]
            for k, stride, pad in zip(conv_kernel, conv_stride, conv_pad):
                L = length_after_conv_layer(L, k=k, stride=stride, pad=pad)
            return L

    def final_attention_mask(self, feature_vector_length, attention_mask=None):
            non_padded_lengths = attention_mask.sum(1)
            out_lengths = self.final_length(non_padded_lengths)      # how can non_padded_lengths get exact 0 here DOES IT MEAN ATTNMASK WAS NOT FILLED?
            out_lengths = out_lengths.to(torch.long)
            bs, _ = attention_mask.shape
            attention_mask = torch.ones((bs, feature_vector_length),
                                        dtype=attention_mask.dtype,
                                        device=attention_mask.device)
            for b, _len in enumerate(out_lengths):
                attention_mask[b, _len:] = 0
            return attention_mask

    def forward(self, x, attention_mask=None):
        x = _prenorm(x,
                     attention_mask=attention_mask)
        x = self.spectrogram_extractor(x)
        x = self.logmel_extractor(x)
        x = self.l1(x)
        x = self.l2(x)
        x = self.l3(x)
        x = self.maxpool_A(x)  # reshape here? so these conv will have large kernel
        x = self.l4(x)
        x = self.l5(x)
        x = self.l6(x)
        x = self.l7(x)
        if attention_mask is not None:
            bs, _, t, _ = x.shape
            a = self.final_attention_mask(feature_vector_length=t,
                                          attention_mask=attention_mask)[:, None, :, None]
            #print(a.shape, x.shape, '\n\n\n\n')
            x = torch.masked_fill(x, a < 1, 0)
            # mask also affects lin !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
            x = self.lin(x) * (  self.sof(x) -10000. * torch.logical_not(a)  ).softmax(2)
        else:
           x = self.lin(x) * self.sof(x).softmax(2)

        x = x.sum(2)  # bs, ch, time-frames, HALF_MEL -> bs, ch, HALF_MEL
        # --
        xT = x.transpose(1,2)
        x = torch.cat([x,
                       torch.bmm(x, xT),   # corr  (chxmel) x (melxCH)
                    #    torch.bmm(x, x),   # corr ch * ch
                    #    torch.bmm(xT, xT)  # corr mel * mel
                       ], 2)
        # --
        return x.reshape(-1, 338)


class Wav2SmallConfig(PretrainedConfig):
    model_type = "wav2vec2"

    def __init__(self,
                 **kwargs):
        super().__init__(**kwargs)
        self.half_mel = 13
        self.n_fft = 64
        self.n_time = 64
        self.hidden = 2 * self.half_mel * self.half_mel
        self.hop = self.n_time // 2


class Wav2Small(Wav2Vec2PreTrainedModel):

    def __init__(self,
                 config):
        super().__init__(config)
        self.vgg7 = Vgg7()
        self.adv     = nn.Linear(config.hidden, 3)   # 0=arousal, 1=dominance, 2=valence

    def forward(self, x, attention_mask=None):
        x = self.vgg7(x, attention_mask=attention_mask)
        return self.adv(x)
    
    
    




def _ccc(x, y):
    '''if len(x) = len(y) = 1 we have 0/0 as a&b can both be negative we should add 1e-7 to denominator protecting sign of denominator
       to find sign of denominator and add 1e-7 if sgn>=0 or -1e-7 if sgn<0'''

    mean_y = y.mean()
    mean_x = x.mean()
    a = x - mean_x
    b = y - mean_y
    L = (mean_x - mean_y).abs() * .1 * x.shape[0]
    #print(L / ((mean_x - mean_y) **2  * x.shape[0]))
    numerator = torch.dot(a, b)    # L term  if both a,b scalars dissallows 0 numerator [OFFICIAL CCC HAS L ONLY IN D]
    denominator = torch.dot(a, a) + torch.dot(b, b) + L  # if both a,b are equalscalars then the dots are all zero and ccc=1
    denominator = torch.where(denominator.sign() < 0,
                              denominator - 1e-7,
                              denominator + 1e-7)
    ccc = numerator / denominator

    return -ccc #+ F.l1_loss(a, b)



wav2small = Wav2Small.from_pretrained('audeering/wav2small').to(device).eval()


# Error figure for the first plot
fig_error, ax = plt.subplots(figsize=(8, 6))
error_message = "Error: No .wav or Mic. audio provided."
ax.text(0.5, 0.5, error_message,
        ha='center',
        va='center',
        fontsize=24,
        color='gray',
        fontweight='bold',
        transform=ax.transAxes)
ax.set_xticks([])
ax.set_yticks([])
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_frame_on(True)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)

def process_audio(audio_filepath):
    if audio_filepath is None:

        return fig_error, fig_error

    waveform, sample_rate = librosa.load(audio_filepath, sr=None)

    # Resample audio to 16kHz if the sample rate is different
    if sample_rate != 16000:
        resampled_waveform_np = audresample.resample(waveform, sample_rate, 16000)
    else:
        resampled_waveform_np = waveform[None, :]

    x = torch.from_numpy(resampled_waveform_np[:, :64000]).to(torch.float)  # only 4s for speed

    with torch.no_grad():

        logits_dawn = dawn(x).cpu().numpy()[0, :]

        logits_wavlm = base(x).cpu().numpy()[0, :]

        # 17K params
        logits_wav2small = wav2small(x).cpu().numpy()[0, :]


    # --- Plot 1: Wav2Vec2 vs Wav2Small Teacher Outputs ---

    fig, ax = plt.subplots(figsize=(10, 6))

    left_bars_data = logits_dawn.clip(0, 1)
    right_bars_data = logits_wav2small.clip(0, 1)

    bar_labels = ['\nArousal', '\nDominance', '\nValence']
    y_pos = np.arange(len(bar_labels))

    # Define colormaps for each category to ensure distinct colors
    category_colormaps = [plt.cm.Blues, plt.cm.Greys, plt.cm.Oranges]

    left_filled_colors = []
    right_filled_colors = []
    background_colors = []

    # Assign specific shades for filled bars and background bars
    for i, cmap in enumerate(category_colormaps):
        left_filled_colors.append(cmap(0.74))
        right_filled_colors.append(cmap(0.64))
        background_colors.append(cmap(0.1))

    # Plot transparent background bars
    for i in range(len(bar_labels)):
        ax.barh(y_pos[i], -1, color=background_colors[i], alpha=0.3, height=0.6)
        ax.barh(y_pos[i], 1, color=background_colors[i], alpha=0.3, height=0.6)

    # Plot the filled bars for actual data
    for i in range(len(bar_labels)):
        ax.barh(y_pos[i], -left_bars_data[i], color=left_filled_colors[i], alpha=1, height=0.6)
        ax.barh(y_pos[i], right_bars_data[i], color=right_filled_colors[i], alpha=1, height=0.6)

    # Add a central vertical axis divider
    ax.axvline(0, color='black', linewidth=0.8, linestyle='--')

    # Set x-axis limits and y-axis ticks/labels
    ax.set_xlim(-1, 1)
    ax.set_yticks(y_pos)
    ax.set_yticklabels(bar_labels, fontsize=12)

    # Custom formatter for x-axis to show absolute percentage values
    def abs_tick_formatter(x, pos):
        return f'{int(abs(x) * 100)}%'
    ax.xaxis.set_major_formatter(plt.FuncFormatter(abs_tick_formatter))

    # Set plot title and x-axis label
    ax.set_title('', fontsize=16, pad=20)
    ax.set_xlabel('Wav2Vev2 (Dawn)                                               Wav2Small (17K param.)', fontsize=12)

    # Remove top, right, and left spines for a cleaner look
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.spines['left'].set_visible(False)

    # Add annotations (percentage values) to the filled bars
    for i in range(len(bar_labels)):
        ax.text(-left_bars_data[i] - 0.05, y_pos[i], f'{int(left_bars_data[i] * 100)}%',
                va='center', ha='right', color=left_filled_colors[i], fontweight='bold')
        ax.text(right_bars_data[i] + 0.05, y_pos[i], f'{int(right_bars_data[i] * 100)}%',
                va='center', ha='left', color=right_filled_colors[i], fontweight='bold')



    # -- PLOT 2 : WavLM / Wav2Small Teacher

    fig_2, ax_2 = plt.subplots(figsize=(10, 6))


    left_bars_data = logits_wavlm.clip(0, 1)
    right_bars_data = (.5 * logits_dawn + .5 * logits_wavlm).clip(0, 1)

    bar_labels = ['\nArousal', '\nDominance', '\nValence']
    y_pos = np.arange(len(bar_labels))

    # Define colormaps for each category to ensure distinct colors
    category_colormaps = [plt.cm.Blues, plt.cm.Greys, plt.cm.Oranges]

    left_filled_colors = []
    right_filled_colors = []
    background_colors = []

    # Assign specific shades for filled bars and background bars
    for i, cmap in enumerate(category_colormaps):
        left_filled_colors.append(cmap(0.74))
        right_filled_colors.append(cmap(0.64))
        background_colors.append(cmap(0.1))

    # Plot transparent background bars
    for i in range(len(bar_labels)):
        ax_2.barh(y_pos[i], -1, color=background_colors[i], alpha=0.3, height=0.6)
        ax_2.barh(y_pos[i], 1, color=background_colors[i], alpha=0.3, height=0.6)

    # Plot the filled bars for actual data
    for i in range(len(bar_labels)):
        ax_2.barh(y_pos[i], -left_bars_data[i], color=left_filled_colors[i], alpha=1, height=0.6)
        ax_2.barh(y_pos[i], right_bars_data[i], color=right_filled_colors[i], alpha=1, height=0.6)

    # Add a central vertical axis divider
    ax_2.axvline(0, color='black', linewidth=0.8, linestyle='--')

    # Set x-axis limits and y-axis ticks/labels
    ax_2.set_xlim(-1, 1)
    ax_2.set_yticks(y_pos)
    ax_2.set_yticklabels(bar_labels, fontsize=12)

    # Custom formatter for x-axis to show absolute percentage values
    def abs_tick_formatter(x, pos):
        return f'{int(abs(x) * 100)}%'
    ax_2.xaxis.set_major_formatter(plt.FuncFormatter(abs_tick_formatter))
    ax_2.set_title('', fontsize=16, pad=20)
    ax_2.set_xlabel('WavLM (Baseline)                                              Wav2Small Teacher (0.4B param.)', fontsize=12)
    ax_2.spines['top'].set_visible(False)
    ax_2.spines['right'].set_visible(False)
    ax_2.spines['left'].set_visible(False)

    # Add annotations (percentage values) to the filled bars
    for i in range(len(bar_labels)):
        ax_2.text(-left_bars_data[i] - 0.05, y_pos[i], f'{int(left_bars_data[i] * 100)}%',
                va='center', ha='right', color=left_filled_colors[i], fontweight='bold')
        ax_2.text(right_bars_data[i] + 0.05, y_pos[i], f'{int(right_bars_data[i] * 100)}%',
                va='center', ha='left', color=right_filled_colors[i], fontweight='bold')
    return fig, fig_2


iface = gr.Interface(
    fn=process_audio,
    inputs=gr.Audio(
        sources=["microphone", "upload"],
        type="filepath",                  # Input type is file path
        label=''
    ),
    outputs=[
        gr.Plot(label="Wav2Vec2 vs Wav2Small (17K params) Plot"),   # First plot output
        gr.Plot(label="WavLM vs Wav2Small Teacher Plot"),         # Second plot output
    ],
    title='',
    description='',
    flagging_mode="never",  # Disables flagging feature
    examples=[
                        "female-46-neutral.wav",
                        "female-20-happy.wav",
                        "male-60-angry.wav",
                        "male-27-sad.wav",
            ],
    css="footer {visibility: hidden}" # Hides the Gradio footer
)

# Gradio Blocks for tabbed interface
with gr.Blocks() as demo:
    # First tab for the existing Arousal/Dominance/Valence plots
    with gr.Tab(label="Arousal / Dominance / Valence"):
        iface.render()
    # Second tab for CCC (Concordance Correlation Coefficient) information
    with gr.Tab(label="CCC"):
       gr.Markdown('''<table style="width:500px"><tr><th colspan=5 >CCC MSP Podcast v1.7</th></tr>
  <tr> <td> </td><td>Arousal</td> <td>Dominance</td> <td>Valence</td> <td> Associated Paper </td> </tr>
  <tr> <td> <a href="https://huggingface.co/audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim">Wav2Vec2</a></td><td>0.744</td><td>0.655</td><td> 0.638 </td><td> <a href="https://arxiv.org/abs/2203.07378">arXiv</a> </td> </tr>
  <tr> <td> <a href="https://huggingface.co/dkounadis/wav2small">Wav2Small Teacher</a></td><td> 0.762 </td> <td> 0.684 </td><td> 0.676 </td><td> <a href="https://arxiv.org/abs/2408.13920">arXiv</a> </td> </tr>
</table>
''')

# Launch the Gradio application
if __name__ == "__main__":
    demo.launch(share=False)