Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,225 Bytes
7ae321e f991534 7ae321e f991534 7ae321e 398df78 7ae321e 398df78 7ae321e 398df78 7ae321e 398df78 d8b37e2 7ae321e d8b37e2 7ae321e 7fee627 7ae321e 7fee627 7ae321e 7fee627 7ae321e 7fee627 7ae321e 386ce83 7ae321e 386ce83 c168d45 7ae321e 7fee627 7ae321e 7fee627 7ae321e 1d4f3af 7fee627 1d4f3af 7fee627 1d4f3af 7ae321e 7fee627 7ae321e 7fee627 386ce83 7ae321e 386ce83 7fee627 386ce83 7fee627 13ba6a4 7ae321e 386ce83 7fee627 386ce83 7ae321e 386ce83 7ae321e 386ce83 7fee627 7ae321e 386ce83 13ba6a4 386ce83 7fee627 7ae321e 7fee627 7ae321e 386ce83 7ae321e 386ce83 7ae321e 386ce83 398df78 7ae321e 398df78 93d45f4 7ae321e 386ce83 7ae321e 93d45f4 7ae321e 398df78 93d45f4 7ae321e 398df78 386ce83 93d45f4 7ae321e 93d45f4 7ae321e 93d45f4 d080a39 7ae321e 93d45f4 7ae321e c1e6be7 7ae321e 386ce83 13ba6a4 386ce83 7ae321e 386ce83 7ae321e 93d45f4 7ae321e c1e6be7 398df78 7ae321e 398df78 53c4865 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 |
import os
os.environ['HF_HOME'] = os.path.abspath(
os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))
)
import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import math
import spaces
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import (
LlamaModel, CLIPTextModel,
LlamaTokenizerFast, CLIPTokenizer
)
from diffusers_helper.hunyuan import (
encode_prompt_conds, vae_decode,
vae_encode, vae_decode_fake
)
from diffusers_helper.utils import (
save_bcthw_as_mp4, crop_or_pad_yield_mask,
soft_append_bcthw, resize_and_center_crop,
state_dict_weighted_merge, state_dict_offset_merge,
generate_timestamp
)
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import (
cpu, gpu,
get_cuda_free_memory_gb,
move_model_to_device_with_memory_preservation,
offload_model_from_device_for_memory_preservation,
fake_diffusers_current_device,
DynamicSwapInstaller,
unload_complete_models,
load_model_as_complete
)
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
# Check GPU memory
free_mem_gb = get_cuda_free_memory_gb(gpu)
high_vram = free_mem_gb > 60
print(f'Free VRAM {free_mem_gb} GB')
print(f'High-VRAM Mode: {high_vram}')
# Load models
text_encoder = LlamaModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder',
torch_dtype=torch.float16
).cpu()
text_encoder_2 = CLIPTextModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder_2',
torch_dtype=torch.float16
).cpu()
tokenizer = LlamaTokenizerFast.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer'
)
tokenizer_2 = CLIPTokenizer.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer_2'
)
vae = AutoencoderKLHunyuanVideo.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='vae',
torch_dtype=torch.float16
).cpu()
feature_extractor = SiglipImageProcessor.from_pretrained(
"lllyasviel/flux_redux_bfl",
subfolder='feature_extractor'
)
image_encoder = SiglipVisionModel.from_pretrained(
"lllyasviel/flux_redux_bfl",
subfolder='image_encoder',
torch_dtype=torch.float16
).cpu()
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
'lllyasviel/FramePack_F1_I2V_HY_20250503',
torch_dtype=torch.bfloat16
).cpu()
# Evaluation mode
vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()
transformer.eval()
# Slicing/Tiling for low VRAM
if not high_vram:
vae.enable_slicing()
vae.enable_tiling()
transformer.high_quality_fp32_output_for_inference = True
print('transformer.high_quality_fp32_output_for_inference = True')
# Move to correct dtype
transformer.to(dtype=torch.bfloat16)
vae.to(dtype=torch.float16)
image_encoder.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
text_encoder_2.to(dtype=torch.float16)
# No gradient
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
transformer.requires_grad_(False)
# DynamicSwap if low VRAM
if not high_vram:
DynamicSwapInstaller.install_model(transformer, device=gpu)
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
text_encoder.to(gpu)
text_encoder_2.to(gpu)
image_encoder.to(gpu)
vae.to(gpu)
transformer.to(gpu)
stream = AsyncStream()
outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)
examples = [
["img_examples/1.png", "The girl dances gracefully, with clear movements, full of charm."],
["img_examples/2.jpg", "The man dances flamboyantly, swinging his hips and striking bold poses with dramatic flair."],
["img_examples/3.png", "The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements."]
]
# Example generation (optional)
def generate_examples(input_image, prompt):
t2v=False
n_prompt=""
seed=31337
total_second_length=60
latent_window_size=9
steps=25
cfg=1.0
gs=10.0
rs=0.0
gpu_memory_preservation=6
use_teacache=True
mp4_crf=16
global stream
if t2v:
default_height, default_width = 640, 640
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
print("No input image provided. Using a blank white image.")
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
stream = AsyncStream()
async_run(
worker, input_image, prompt, n_prompt, seed,
total_second_length, latent_window_size, steps,
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
)
output_filename = None
while True:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
yield (
output_filename,
gr.update(),
gr.update(),
gr.update(),
gr.update(interactive=False),
gr.update(interactive=True)
)
if flag == 'progress':
preview, desc, html = data
yield (
gr.update(),
gr.update(visible=True, value=preview),
desc,
html,
gr.update(interactive=False),
gr.update(interactive=True)
)
if flag == 'end':
yield (
output_filename,
gr.update(visible=False),
gr.update(),
'',
gr.update(interactive=True),
gr.update(interactive=False)
)
break
@torch.no_grad()
def worker(
input_image, prompt, n_prompt, seed,
total_second_length, latent_window_size, steps,
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
):
# Calculate total sections
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
job_id = generate_timestamp()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
try:
# Unload if VRAM is low
if not high_vram:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
# Text encoding
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
if not high_vram:
fake_diffusers_current_device(text_encoder, gpu)
load_model_as_complete(text_encoder_2, target_device=gpu)
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
else:
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
# Process image
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
H, W, C = input_image.shape
height, width = find_nearest_bucket(H, W, resolution=640)
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
# VAE encoding
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
if not high_vram:
load_model_as_complete(vae, target_device=gpu)
start_latent = vae_encode(input_image_pt, vae)
# CLIP Vision
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
if not high_vram:
load_model_as_complete(image_encoder, target_device=gpu)
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
# Convert dtype
llama_vec = llama_vec.to(transformer.dtype)
llama_vec_n = llama_vec_n.to(transformer.dtype)
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
# Start sampling
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
rnd = torch.Generator("cpu").manual_seed(seed)
history_latents = torch.zeros(
size=(1, 16, 16 + 2 + 1, height // 8, width // 8),
dtype=torch.float32
).cpu()
history_pixels = None
# Add start_latent
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
total_generated_latent_frames = 1
for section_index in range(total_latent_sections):
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
return
print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
if not high_vram:
unload_complete_models()
move_model_to_device_with_memory_preservation(
transformer, target_device=gpu,
preserved_memory_gb=gpu_memory_preservation
)
if use_teacache:
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
else:
transformer.initialize_teacache(enable_teacache=False)
def callback(d):
preview = d['denoised']
preview = vae_decode_fake(preview)
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
raise KeyboardInterrupt('User ends the task.')
current_step = d['i'] + 1
percentage = int(100.0 * current_step / steps)
hint = f'Sampling {current_step}/{steps}'
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}'
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
return
indices = torch.arange(
0, sum([1, 16, 2, 1, latent_window_size])
).unsqueeze(0)
(
clean_latent_indices_start,
clean_latent_4x_indices,
clean_latent_2x_indices,
clean_latent_1x_indices,
latent_indices
) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[
:, :, -sum([16, 2, 1]):, :, :
].split([16, 2, 1], dim=2)
clean_latents = torch.cat(
[start_latent.to(history_latents), clean_latents_1x],
dim=2
)
generated_latents = sample_hunyuan(
transformer=transformer,
sampler='unipc',
width=width,
height=height,
frames=latent_window_size * 4 - 3,
real_guidance_scale=cfg,
distilled_guidance_scale=gs,
guidance_rescale=rs,
num_inference_steps=steps,
generator=rnd,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=gpu,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
callback=callback,
)
total_generated_latent_frames += int(generated_latents.shape[2])
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
if not high_vram:
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
load_model_as_complete(vae, target_device=gpu)
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
if history_pixels is None:
history_pixels = vae_decode(real_history_latents, vae).cpu()
else:
section_latent_frames = latent_window_size * 2
overlapped_frames = latent_window_size * 4 - 3
current_pixels = vae_decode(
real_history_latents[:, :, -section_latent_frames:], vae
).cpu()
history_pixels = soft_append_bcthw(
history_pixels, current_pixels, overlapped_frames
)
if not high_vram:
unload_complete_models()
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
print(f'Decoded. Latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
stream.output_queue.push(('file', output_filename))
except:
traceback.print_exc()
if not high_vram:
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
stream.output_queue.push(('end', None))
return
def get_duration(
input_image, prompt, t2v, n_prompt,
seed, total_second_length, latent_window_size,
steps, cfg, gs, rs, gpu_memory_preservation,
use_teacache, mp4_crf, quality_radio=None, aspect_ratio=None
):
# Accept extra arguments for compatibility with process()
return total_second_length * 60
@spaces.GPU(duration=get_duration)
def process(
input_image, prompt, t2v=False, n_prompt="", seed=31337,
total_second_length=60, latent_window_size=9, steps=25,
cfg=1.0, gs=10.0, rs=0.0, gpu_memory_preservation=6,
use_teacache=True, mp4_crf=16, quality_radio="640x360", aspect_ratio="1:1"
):
global stream
quality_map = {
"360p": (640, 360),
"480p": (854, 480),
"540p": (960, 540),
"720p": (1280, 720),
"640x360": (640, 360), # fallback for default
}
# Aspect ratio map: (width, height)
aspect_map = {
"1:1": (1, 1),
"3:4": (3, 4),
"4:3": (4, 3),
"16:9": (16, 9),
"9:16": (9, 16),
}
selected_quality = quality_map.get(quality_radio, (640, 360))
base_width, base_height = selected_quality
if t2v:
# Use aspect ratio to determine final width/height
ar_w, ar_h = aspect_map.get(aspect_ratio, (1, 1))
if ar_w >= ar_h:
target_height = base_height
target_width = int(round(target_height * ar_w / ar_h))
else:
target_width = base_width
target_height = int(round(target_width * ar_h / ar_w))
input_image = np.ones((target_height, target_width, 3), dtype=np.uint8) * 255
print(f"Using blank white image for text-to-video mode, {target_width}x{target_height} ({aspect_ratio})")
else:
target_width, target_height = selected_quality
if isinstance(input_image, dict) and "composite" in input_image:
composite_rgba_uint8 = input_image["composite"]
rgb_uint8 = composite_rgba_uint8[:, :, :3]
mask_uint8 = composite_rgba_uint8[:, :, 3]
h, w = rgb_uint8.shape[:2]
background_uint8 = np.full((h, w, 3), 255, dtype=np.uint8)
alpha_normalized_float32 = mask_uint8.astype(np.float32) / 255.0
alpha_mask_float32 = np.stack([alpha_normalized_float32]*3, axis=2)
blended_image_float32 = rgb_uint8.astype(np.float32) * alpha_mask_float32 + \
background_uint8.astype(np.float32) * (1.0 - alpha_mask_float32)
input_image = np.clip(blended_image_float32, 0, 255).astype(np.uint8)
elif input_image is None:
raise ValueError("Please provide an input image or enable Text to Video mode")
else:
input_image = input_image.astype(np.uint8)
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
stream = AsyncStream()
async_run(
worker, input_image, prompt, n_prompt, seed,
total_second_length, latent_window_size, steps,
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
)
output_filename = None
while True:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
yield (
output_filename,
gr.update(),
gr.update(),
gr.update(),
gr.update(interactive=False),
gr.update(interactive=True)
)
elif flag == 'progress':
preview, desc, html = data
yield (
gr.update(),
gr.update(visible=True, value=preview),
desc,
html,
gr.update(interactive=False),
gr.update(interactive=True)
)
elif flag == 'end':
yield (
output_filename,
gr.update(visible=False),
gr.update(),
'',
gr.update(interactive=True),
gr.update(interactive=False)
)
break
def end_process():
stream.input_queue.push('end')
quick_prompts = [
'The girl dances gracefully, with clear movements, full of charm.',
'A character doing some simple body movements.'
]
quick_prompts = [[x] for x in quick_prompts]
def make_custom_css():
base_progress_css = make_progress_bar_css()
extra_css = """
body {
background: #1a1b1e !important;
font-family: "Noto Sans", sans-serif;
color: #e0e0e0;
}
#title-container {
text-align: center;
padding: 20px 0;
margin-bottom: 30px;
}
#title-container h1 {
color: #4b9ffa;
font-size: 2.5rem;
margin: 0;
font-weight: 800;
}
#title-container p {
color: #e0e0e0;
}
.three-column-container {
display: flex;
gap: 20px;
min-height: 800px;
max-width: 1600px;
margin: 0 auto;
}
.settings-panel {
flex: 0 0 150px;
background: #2a2b2e;
padding: 12px;
border-radius: 15px;
border: 1px solid #3a3b3e;
}
.settings-panel .gr-slider {
width: calc(100% - 10px) !important;
}
.settings-panel label {
color: #e0e0e0 !important;
}
.settings-panel label span:first-child {
font-size: 0.9rem !important;
}
.main-panel {
flex: 1;
background: #2a2b2e;
padding: 20px;
border-radius: 15px;
border: 1px solid #3a3b3e;
display: flex;
flex-direction: column;
gap: 20px;
}
.output-panel {
flex: 1;
background: #2a2b2e;
padding: 20px;
border-radius: 15px;
border: 1px solid #3a3b3e;
display: flex;
flex-direction: column;
align-items: center; /* Center output content */
gap: 20px;
}
.output-panel > div {
width: 100%;
max-width: 640px; /* Limit width for better centering */
}
.settings-panel h3 {
color: #4b9ffa;
margin-bottom: 15px;
font-size: 1.1rem;
border-bottom: 2px solid #4b9ffa;
padding-bottom: 8px;
}
.prompt-container {
min-height: 200px;
}
.quick-prompts {
margin-top: 10px;
padding: 10px;
background: #1a1b1e;
border-radius: 10px;
}
.button-container {
display: flex;
gap: 10px;
margin: 15px 0;
justify-content: center;
width: 100%;
}
/* Override Gradio's default light theme */
.gr-box {
background: #2a2b2e !important;
border-color: #3a3b3e !important;
}
.gr-input, .gr-textbox {
background: #1a1b1e !important;
border-color: #3a3b3e !important;
color: #e0e0e0 !important;
}
.gr-form {
background: transparent !important;
border: none !important;
}
.gr-label {
color: #e0e0e0 !important;
}
.gr-button {
background: #4b9ffa !important;
color: white !important;
}
.gr-button.secondary-btn {
background: #ff4d4d !important;
}
"""
return base_progress_css + extra_css
css = make_custom_css()
block = gr.Blocks(css=css).queue()
with block:
with gr.Group(elem_id="title-container"):
gr.Markdown("<h1>FramePack</h1>")
gr.Markdown(
"""Generate amazing animations from a single image using AI.
Just upload an image, write a prompt, and watch the magic happen!"""
)
with gr.Row(elem_classes="three-column-container"):
# Left Column - Settings
with gr.Column(elem_classes="settings-panel"):
gr.Markdown("### Generation Settings")
with gr.Group():
total_second_length = gr.Slider(
label="Duration (Seconds)",
minimum=1,
maximum=10,
value=2,
step=1,
info='Length of generated video'
)
steps = gr.Slider(
label="Quality Steps",
minimum=1,
maximum=100,
value=25,
step=1,
info='25-30 recommended'
)
gs = gr.Slider(
label="Animation Strength",
minimum=1.0,
maximum=32.0,
value=10.0,
step=0.1,
info='8-12 recommended'
)
quality_radio = gr.Radio(
label="Video Quality (Resolution)",
choices=["360p", "480p", "540p", "720p"],
value="640x360",
info="Choose output video resolution"
)
# Aspect ratio dropdown, hidden by default
aspect_ratio = gr.Dropdown(
label="Aspect Ratio",
choices=["1:1", "3:4", "4:3", "16:9", "9:16"],
value="1:1",
visible=False,
info="Only applies to Text to Video mode"
)
gr.Markdown("### Advanced")
with gr.Group():
t2v = gr.Checkbox(
label='Text to Video Mode',
value=False,
info='Generate without input image'
)
use_teacache = gr.Checkbox(
label='Fast Mode',
value=True,
info='Faster but may affect details'
)
gpu_memory_preservation = gr.Slider(
label="VRAM Usage",
minimum=6,
maximum=128,
value=6,
step=1
)
seed = gr.Number(
label="Seed",
value=31337,
precision=0
)
# Hidden settings
n_prompt = gr.Textbox(visible=False, value="")
latent_window_size = gr.Slider(visible=False, value=9)
cfg = gr.Slider(visible=False, value=1.0)
rs = gr.Slider(visible=False, value=0.0)
mp4_crf = gr.Number(visible=False, value=16) # <-- Add this hidden component
# Middle Column - Main Content
with gr.Column(elem_classes="main-panel"):
input_image = gr.Image(
label="Upload Your Image",
type="numpy",
height=320
)
# Moved buttons here
with gr.Group(elem_classes="button-container"):
start_button = gr.Button(
value="▶️ Generate Animation",
elem_classes=["primary-btn"]
)
stop_button = gr.Button(
value="⏹️ Stop",
elem_classes=["secondary-btn"],
interactive=False
)
with gr.Group(elem_classes="prompt-container"):
prompt = gr.Textbox(
label="Describe the animation you want",
placeholder="E.g., The character dances gracefully with flowing movements...",
lines=4
)
with gr.Group(elem_classes="quick-prompts"):
gr.Markdown("### 💡 Quick Prompts")
example_quick_prompts = gr.Dataset(
samples=quick_prompts,
label='Click to use',
samples_per_page=3,
components=[prompt]
)
# Right Column - Output
with gr.Column(elem_classes="output-panel"):
preview_image = gr.Image(
label="Generation Preview",
height=200,
visible=False
)
result_video = gr.Video(
label="Generated Animation",
autoplay=True,
show_share_button=True,
height=400,
loop=True
)
with gr.Group(elem_classes="progress-container"):
progress_desc = gr.Markdown(
elem_classes='no-generating-animation'
)
progress_bar = gr.HTML(
elem_classes='no-generating-animation'
)
# Setup callbacks
ips = [
input_image, prompt, t2v, n_prompt, seed,
total_second_length, latent_window_size,
steps, cfg, gs, rs, gpu_memory_preservation,
use_teacache, mp4_crf, # Use the hidden component here
quality_radio, aspect_ratio
]
start_button.click(
fn=process,
inputs=ips,
outputs=[
result_video, preview_image,
progress_desc, progress_bar,
start_button, stop_button
]
)
stop_button.click(fn=end_process)
example_quick_prompts.click(
fn=lambda x: x[0],
inputs=[example_quick_prompts],
outputs=prompt,
show_progress=False,
queue=False
)
# Show/hide aspect ratio dropdown based on t2v checkbox
def show_aspect_ratio(t2v_checked):
return gr.update(visible=bool(t2v_checked))
t2v.change(
fn=show_aspect_ratio,
inputs=[t2v],
outputs=[aspect_ratio],
queue=False
)
block.launch(share=True) |