Spaces:
Build error
Build error
File size: 6,024 Bytes
30a0ec5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
"""
****************** COPYRIGHT AND CONFIDENTIALITY INFORMATION ******************
Copyright (c) 2018 [Thomson Licensing]
All Rights Reserved
This program contains proprietary information which is a trade secret/business \
secret of [Thomson Licensing] and is protected, even if unpublished, under \
applicable Copyright laws (including French droit d'auteur) and/or may be \
subject to one or more patent(s).
Recipient is to retain this program in confidence and is not permitted to use \
or make copies thereof other than as permitted in a written agreement with \
[Thomson Licensing] unless otherwise expressly allowed by applicable laws or \
by [Thomson Licensing] under express agreement.
Thomson Licensing is a company of the group TECHNICOLOR
*******************************************************************************
This scripts permits one to reproduce training and experiments of:
Engilberge, M., Chevallier, L., Pérez, P., & Cord, M. (2018, April).
Finding beans in burgers: Deep semantic-visual embedding with localization.
In Proceedings of CVPR (pp. 3984-3993)
Author: Martin Engilberge
"""
import os
import nltk
import pickle
import torch
from nltk.tokenize import word_tokenize
from torch.autograd import Variable
from torch.nn.utils.rnn import pad_sequence
from PIL import Image
import matplotlib.pyplot as plt
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class Namespace:
""" Namespace class to manually instantiate joint_embedding model """
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
def _load_dictionary(dir_st):
path_dico = os.path.join(dir_st, 'dictionary.txt')
if not os.path.exists(path_dico):
print("Invalid path no dictionary found")
with open(path_dico, 'r') as handle:
dico_list = handle.readlines()
dico = {word.strip(): idx for idx, word in enumerate(dico_list)}
return dico
def preprocess(text):
sent_detector = nltk.data.load('tokenizers/punkt/english.pickle')
sents = sent_detector.tokenize(text)
result = list()
for s in sents:
tokens = word_tokenize(s)
result.append(tokens)
return result
def flatten(l):
return [item for sublist in l for item in sublist]
def encode_sentences(sents, embed, dico):
sents_list = list()
for sent in sents:
sent_tok = preprocess(sent)[0]
sent_in = Variable(torch.FloatTensor(1, len(sent_tok), 620))
for i, w in enumerate(sent_tok):
try:
sent_in.data[0, i] = torch.from_numpy(embed[dico[w]])
except KeyError:
sent_in.data[0, i] = torch.from_numpy(embed[dico["UNK"]])
sents_list.append(sent_in)
return sents_list
def encode_sentence(sent, embed, dico, tokenize=True):
if tokenize:
sent_tok = preprocess(sent)[0]
else:
sent_tok = sent
sent_in = torch.FloatTensor(len(sent_tok), 620)
for i, w in enumerate(sent_tok):
try:
sent_in[i, :620] = torch.from_numpy(embed[dico[w]])
except KeyError:
sent_in[i, :620] = torch.from_numpy(embed[dico["UNK"]])
return sent_in
def save_checkpoint(state, is_best, model_name, epoch):
if is_best:
torch.save(state, './weights/best_' + model_name + ".pth.tar")
def log_epoch(logger, epoch, train_loss, val_loss, lr, batch_train, batch_val, data_train, data_val, recall):
logger.add_scalar('Loss/Train', train_loss, epoch)
logger.add_scalar('Loss/Val', val_loss, epoch)
logger.add_scalar('Learning/Rate', lr, epoch)
logger.add_scalar('Learning/Overfitting', val_loss / train_loss, epoch)
logger.add_scalar('Time/Train/Batch Processing', batch_train, epoch)
logger.add_scalar('Time/Val/Batch Processing', batch_val, epoch)
logger.add_scalar('Time/Train/Data loading', data_train, epoch)
logger.add_scalar('Time/Val/Data loading', data_val, epoch)
logger.add_scalar('Recall/Val/CapRet/R@1', recall[0][0], epoch)
logger.add_scalar('Recall/Val/CapRet/R@5', recall[0][1], epoch)
logger.add_scalar('Recall/Val/CapRet/R@10', recall[0][2], epoch)
logger.add_scalar('Recall/Val/CapRet/MedR', recall[2], epoch)
logger.add_scalar('Recall/Val/ImgRet/R@1', recall[1][0], epoch)
logger.add_scalar('Recall/Val/ImgRet/R@5', recall[1][1], epoch)
logger.add_scalar('Recall/Val/ImgRet/R@10', recall[1][2], epoch)
logger.add_scalar('Recall/Val/ImgRet/MedR', recall[3], epoch)
def collate_fn_padded(data):
images, captions = zip(*data)
images = torch.stack(images, 0)
lengths = [len(cap) for cap in captions]
targets = pad_sequence(captions, batch_first=True)
return images, targets, lengths
def collate_fn_cap_padded(data):
captions = data
lengths = [len(cap) for cap in captions]
targets = pad_sequence(captions, batch_first=True)
return targets, lengths
def collate_fn_semseg(data):
images, size, targets = zip(*data)
images = torch.stack(images, 0)
return images, size, targets
def collate_fn_img_padded(data):
images = data
images = torch.stack(images, 0)
return images
def load_obj(path):
with open(os.path.normpath(path + '.pkl'), 'rb') as f:
return pickle.load(f)
def save_obj(obj, path):
with open(os.path.normpath(path + '.pkl'), 'wb') as f:
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
def show_imgs(imgs_path):
plt.ion()
for i, img_path in enumerate(imgs_path):
img = Image.open(img_path)
plt.figure("Image") # 图像窗口名称
plt.imshow(img)
plt.axis('on') # 关掉坐标轴为 off
plt.title('image_{}'.format(i)) # 图像题目
plt.ioff()
plt.show()
plt.close()
|