File size: 9,044 Bytes
30a0ec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
"""
****************** COPYRIGHT AND CONFIDENTIALITY INFORMATION ******************
Copyright (c) 2018 [Thomson Licensing]
All Rights Reserved
This program contains proprietary information which is a trade secret/business \
secret of [Thomson Licensing] and is protected, even if unpublished, under \
applicable Copyright laws (including French droit d'auteur) and/or may be \
subject to one or more patent(s).
Recipient is to retain this program in confidence and is not permitted to use \
or make copies thereof other than as permitted in a written agreement with \
[Thomson Licensing] unless otherwise expressly allowed by applicable laws or \
by [Thomson Licensing] under express agreement.
Thomson Licensing is a company of the group TECHNICOLOR
*******************************************************************************
This scripts permits one to reproduce training and experiments of:
    Engilberge, M., Chevallier, L., Pérez, P., & Cord, M. (2018, April).
    Finding beans in burgers: Deep semantic-visual embedding with localization.
    In Proceedings of CVPR (pp. 3984-3993)

Author: Martin Engilberge
"""

import numpy as np
import cv2
import os 

from scipy.misc import imresize
from pycocotools import mask as maskUtils


# ################### Functions for the pointing game evaluation ################### #

def regions_scale(x, y, rw, rh, h, w, org_dim, cc=None):
    if cc is None:
        fx = x * org_dim[0] / w
        fy = y * org_dim[1] / h
        srw = rw * org_dim[0] / w
        srh = rh * org_dim[1] / h
    else:
        if (h > w):
            r = float(h) / float(w)

            sx = x * cc / w
            sy = y * cc / w

            srw = rw * cc / w
            srh = rh * cc / w

            fx = sx - (cc - org_dim[0]) / 2
            fy = sy - (cc * r - org_dim[1]) / 2
        else:
            r = float(w) / float(h)

            sx = x * cc / h
            sy = y * cc / h

            srw = rw * cc / h
            srh = rh * cc / h

            fy = sy - (cc - org_dim[1]) / 2
            fx = sx - (cc * r - org_dim[0]) / 2

    return fx, fy, srw, srh


def is_in_region(x, y, bx, by, w, h):
    return (x > bx and x < (bx + w) and y > by and y < (by + h))


def one_img_process(act_map, caps_enc, caps_ori, fc_w, regions, h, w, org_dim, nmax=180, bilinear=False, cc=None, img_id=0):
    size = act_map.shape[1:]
    act_map = act_map.reshape(act_map.shape[0], -1)
    prod = np.dot(fc_w, act_map)
    if not os.path.exists("heat_map"):
        os.makedirs("heat_map")
    total = 0
    correct = 0
    # caps_ori = caps_ori.strip().split(" ")
    for i, cap in enumerate(caps_enc):
        order = np.argsort(cap)[::-1]
        cap_ori = caps_ori[i].phrase
        heat_map = np.reshape(
            np.dot(np.abs(cap[order[:nmax]]), prod[order[:nmax]]), size)
        # heat_map.save("heat_map/{}.jpg".format(i))
        # print(img_path)
        img_path = os.path.join("/home/atticus/proj/data/vg/VG_100K",
                                          str(img_id) + ".jpg")
        img_ori = cv2.imread(img_path)

        if bilinear:
            heat_map = imresize(heat_map, (org_dim[0], org_dim[1]))
            x, y = np.unravel_index(heat_map.T.argmax(), heat_map.T.shape)
        else:
            x, y = np.unravel_index(heat_map.T.argmax(), heat_map.T.shape)
            if cc is None:
                x = (org_dim[0] / size[0]) * x
                y = (org_dim[1] / size[1]) * y
            else:
                if (h > w):
                    r = float(h) / float(w)
                    x = (org_dim[0] / size[0]) * x + (cc - org_dim[0]) / 2
                    y = (org_dim[1] / size[1]) * y + (cc * r - org_dim[1]) / 2
                else:
                    r = float(w) / float(h)
                    x = (org_dim[0] / size[0]) * x + (cc * r - org_dim[0]) / 2
                    y = (org_dim[1] / size[1]) * y + (cc - org_dim[1]) / 2

        r = regions[i]
        fx, fy, srw, srh = regions_scale(
            r.x, r.y, r.width, r.height, h, w, org_dim, cc)
        # heatmap = np.uint8(255 * heat_map)
        heat_map = imresize(heat_map, (int(org_dim[0]), int(org_dim[1])))
        img_ori = cv2.resize(img_ori, (int(org_dim[0]), int(org_dim[1])))
        heatmap = np.uint8(255 - 255 * heat_map)  # 将特征图转换为uint8格式
        heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)  # 将特征图转为伪彩色图
        heat_img = cv2.addWeighted(img_ori, 1, heatmap, 0.5, 0)
        heat_ori = cv2.applyColorMap(heat_map, cv2.COLORMAP_JET)
        cv2.imwrite("heat_map/{}-{}-ori.jpg".format(img_id, cap_ori), img_ori)
        cv2.imwrite("heat_map/{}-{}.jpg".format(img_id, cap_ori), heat_img)
        cv2.imwrite("heat_map/{}-{}-heat.jpg".format(img_id, cap_ori), heat_ori)
        if is_in_region(x, y, fx, fy, srw, srh):
            correct += 1
        total += 1

    return correct, total


def compute_pointing_game_acc(imgs_stack, caps_stack, caps_ori, nb_regions, regions, fc_w, org_dim, cc=None, nmax=180):
    correct = 0
    total = 0
    
    for i, act_map in enumerate(imgs_stack):
        seen_region = sum(nb_regions[:i])
        caps_enc = caps_stack[seen_region:seen_region + nb_regions[i]]
        region = regions[i][1]
        h = regions[i][0].height
        w = regions[i][0].width
        img_id = regions[i][0].id
        c, t = one_img_process(act_map, caps_enc, region, fc_w,
                               region, h, w, org_dim, nmax=nmax, cc=cc, img_id=img_id)
        correct += c
        total += t

        # heat_map = generate_heat_map(act_map=act_map, caps_enc=caps_enc, fc_w=fc_w)
        # heat_map.save("heat_map/{}.jpg".format(i))

    return float(correct) / float(total)


# ################### Functions for the semantic segmentation evaluation ################### #


def generate_heat_map(act_map, caps_enc, fc_w, nmax=180, in_dim=(224, 224)):
    size = act_map.shape[1:]
    act_map = act_map.reshape(act_map.shape[0], -1)
    prod = np.dot(fc_w, act_map)

    order = np.argsort(caps_enc)[::-1]
    # print order
    heat_map = np.reshape(
        np.dot(np.abs(caps_enc[order[:nmax]]), prod[order[:nmax]]), size)
    # print heat_map

    heat_map = imresize(heat_map, in_dim)

    return heat_map


def gen_binary_heat_map(maps, concept, fc_w, c_thresh, in_dim=(400, 400)):
    hm = generate_heat_map(maps, concept, fc_w, nmax=10, in_dim=in_dim)

    # hm += abs(np.min(hm))

    def thresh(a, coef):
        return coef * (np.max(a) - np.min(a))

    return np.int32(hm > thresh(hm, c_thresh))


def compute_iou(hm, target_mask):
    return np.sum(hm * target_mask) / (np.sum(target_mask) + np.sum(hm) - np.sum(hm * target_mask))


def mask_from_poly(polygons, org_size, in_dim):
    mask_poli = np.zeros((org_size[1], org_size[0]))

    for i in range(len(polygons)):
        if polygons[i][0] == "rle":
            m = maskUtils.decode(polygons[i][1])
            mask_poli += m.squeeze()
        else:
            poly = np.int32(np.array(polygons[i]).reshape(
                (int(len(polygons[i]) / 2), 2)))
            cv2.fillPoly(mask_poli, [poly], [1])

    mask_poli = imresize(mask_poli, in_dim, interp="nearest")

    return np.float32(mask_poli > 0)


def compute_semantic_seg(imgs_stack, sizes_list, target_ann, cats_stack, fc_w, c_thresh, in_dim=(200, 200)):

    mAp = 0
    IoUs = dict()
    for k in cats_stack.keys():
        IoUs[k] = list()
        for i in range(imgs_stack.shape[0]):
            if k in target_ann[i]:
                target_mask = mask_from_poly(target_ann[i][k], sizes_list[i], in_dim)

                heat_map = gen_binary_heat_map(imgs_stack[i], cats_stack[k], fc_w, c_thresh, in_dim=in_dim)

                iou = compute_iou(heat_map, target_mask)

                # last element of tuple is groundtruth target
                IoUs[k] += [(iou, 1)]
            else:
                # if categorie k is not present in grountruth set iou at 0
                IoUs[k] += [(0, 0)]

    mAp = list()
    for th in [0.3, 0.4, 0.5]:
        mAp.append(get_map_at(IoUs, th))

    return mAp


def compute_ap(rec, prec):
    ap = 0
    rec_prev = 0
    for k in range(len(rec)):
        prec_c = prec[k]
        rec_c = rec[k]

        ap += prec_c * (rec_c - rec_prev)

        rec_prev = rec_c
    return ap


def get_map_at(IoUs, at):
    ap = dict()
    for c in IoUs.keys():
        sort_tupe_c = sorted(list(IoUs[c]), key=lambda tup: tup[0], reverse=True)

        y_pred = [float(x[0] > at) for x in sort_tupe_c]
        y_true = [x[1] for x in sort_tupe_c]

        npos = np.sum(y_true)

        nd = len(y_pred)
        tp = np.zeros((nd))
        fp = np.zeros((nd))

        for i in range(1, nd):
            if y_pred[i] == 1:
                tp[i] = 1
            else:
                fp[i] = 1

        # compute precision/recall
        fp = np.cumsum(fp)
        tp = np.cumsum(tp)
        rec = tp / npos
        prec = tp / (fp + tp)

        prec[0] = 0

        ap[c] = compute_ap(rec, prec)

    return np.mean(list(ap.values()))