File size: 21,062 Bytes
589b7f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
from abc import abstractmethod
from functools import partial
import math

import numpy as np
import random
import torch as th
import torch.nn as nn
import torch.nn.functional as F

from ldm.modules.diffusionmodules.util import (
    conv_nd,
    linear,
    avg_pool_nd,
    zero_module,
    normalization,
    timestep_embedding,
)
from ldm.modules.attention import SpatialTransformer
# from .positionnet  import PositionNet
from torch.utils import checkpoint
from ldm.util import instantiate_from_config
from copy import deepcopy

class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """


class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """
    A sequential module that passes timestep embeddings to the children that
    support it as an extra input.
    """

    def forward(self, x, emb, context, objs,t):
        probs  = []
        self_prob_list = []
        
        for layer in self:
            if isinstance(layer, TimestepBlock):
                x = layer(x, emb)
            elif isinstance(layer, SpatialTransformer):
                x, prob, self_prob = layer(x, context, objs,t)
                probs.append(prob)
                self_prob_list.append(self_prob)
            else:
                x = layer(x)
        return x, probs, self_prob_list


class Upsample(nn.Module):
    """
    An upsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 upsampling occurs in the inner-two dimensions.
    """

    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        if use_conv:
            self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.dims == 3:
            x = F.interpolate(
                x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
            )
        else:
            x = F.interpolate(x, scale_factor=2, mode="nearest")
        if self.use_conv:
            x = self.conv(x)
        return x




class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 downsampling occurs in the inner-two dimensions.
    """

    def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        stride = 2 if dims != 3 else (1, 2, 2)
        if use_conv:
            self.op = conv_nd(
                dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
            )
        else:
            assert self.channels == self.out_channels
            self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)

    def forward(self, x):
        assert x.shape[1] == self.channels
        return self.op(x)


class ResBlock(TimestepBlock):
    """
    A residual block that can optionally change the number of channels.
    :param channels: the number of input channels.
    :param emb_channels: the number of timestep embedding channels.
    :param dropout: the rate of dropout.
    :param out_channels: if specified, the number of out channels.
    :param use_conv: if True and out_channels is specified, use a spatial
        convolution instead of a smaller 1x1 convolution to change the
        channels in the skip connection.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param use_checkpoint: if True, use gradient checkpointing on this module.
    :param up: if True, use this block for upsampling.
    :param down: if True, use this block for downsampling.
    """

    def __init__(
        self,
        channels,
        emb_channels,
        dropout,
        out_channels=None,
        use_conv=False,
        use_scale_shift_norm=False,
        dims=2,
        use_checkpoint=False,
        up=False,
        down=False,
    ):
        super().__init__()
        self.channels = channels
        self.emb_channels = emb_channels
        self.dropout = dropout
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_checkpoint = use_checkpoint
        self.use_scale_shift_norm = use_scale_shift_norm

        self.in_layers = nn.Sequential(
            normalization(channels),
            nn.SiLU(),
            conv_nd(dims, channels, self.out_channels, 3, padding=1),
        )

        self.updown = up or down

        if up:
            self.h_upd = Upsample(channels, False, dims)
            self.x_upd = Upsample(channels, False, dims)
        elif down:
            self.h_upd = Downsample(channels, False, dims)
            self.x_upd = Downsample(channels, False, dims)
        else:
            self.h_upd = self.x_upd = nn.Identity()

        self.emb_layers = nn.Sequential(
            nn.SiLU(),
            linear(
                emb_channels,
                2 * self.out_channels if use_scale_shift_norm else self.out_channels,
            ),
        )
        self.out_layers = nn.Sequential(
            normalization(self.out_channels),
            nn.SiLU(),
            nn.Dropout(p=dropout),
            zero_module(
                conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
            ),
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        elif use_conv:
            self.skip_connection = conv_nd(
                dims, channels, self.out_channels, 3, padding=1
            )
        else:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)

    def forward(self, x, emb):
        """
        Apply the block to a Tensor, conditioned on a timestep embedding.
        :param x: an [N x C x ...] Tensor of features.
        :param emb: an [N x emb_channels] Tensor of timestep embeddings.
        :return: an [N x C x ...] Tensor of outputs.
        """
        # return checkpoint(
        #     self._forward, (x, emb), self.parameters(), self.use_checkpoint
        # )
        if self.use_checkpoint and x.requires_grad:
            return checkpoint.checkpoint(self._forward, x, emb )
        else:
            return self._forward(x, emb) 


    def _forward(self, x, emb):
        if self.updown:
            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
            h = in_rest(x)
            h = self.h_upd(h)
            x = self.x_upd(x)
            h = in_conv(h)
        else:
            h = self.in_layers(x)
        emb_out = self.emb_layers(emb).type(h.dtype)
        while len(emb_out.shape) < len(h.shape):
            emb_out = emb_out[..., None]
        if self.use_scale_shift_norm:
            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
            scale, shift = th.chunk(emb_out, 2, dim=1)
            h = out_norm(h) * (1 + scale) + shift
            h = out_rest(h)
        else:
            h = h + emb_out
            h = self.out_layers(h)
        return self.skip_connection(x) + h




class UNetModel(nn.Module):
    def __init__(
        self,
        image_size,
        in_channels,
        model_channels,
        out_channels,
        num_res_blocks,
        attention_resolutions,
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        use_checkpoint=False,
        num_heads=8,
        use_scale_shift_norm=False,
        transformer_depth=1,
        positive_len = 768,           
        context_dim=None,  
        fuser_type = None,
        is_inpaint = False,
        is_style = False,
        grounding_downsampler = None,
        
        
    ):
        super().__init__()
        
        self.image_size = image_size
        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        self.num_res_blocks = num_res_blocks
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.use_checkpoint = use_checkpoint
        self.num_heads = num_heads
        self.context_dim = context_dim
        self.fuser_type = fuser_type
        self.is_inpaint = is_inpaint
        self.positive_len = positive_len
        assert fuser_type in ["gatedSA","gatedSA2","gatedCA"]

        self.grounding_tokenizer_input = None # set externally 


        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )



        self.downsample_net = None 
        self.additional_channel_from_downsampler = 0
        self.first_conv_type = "SD"
        self.first_conv_restorable = True 
        if grounding_downsampler is not None:
            self.downsample_net = instantiate_from_config(grounding_downsampler)  
            self.additional_channel_from_downsampler = self.downsample_net.out_dim
            self.first_conv_type = "GLIGEN"

        if is_inpaint:
            # The new added channels are: masked image (encoded image) and mask, which is 4+1
            in_c = in_channels+self.additional_channel_from_downsampler+in_channels+1
            self.first_conv_restorable = False # in inpaint; You must use extra channels to take in masked real image  
        else:
            in_c = in_channels+self.additional_channel_from_downsampler
        self.input_blocks = nn.ModuleList([TimestepEmbedSequential(conv_nd(dims, in_c, model_channels, 3, padding=1))])


        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        
        # = = = = = = = = = = = = = = = = = = = = Down Branch = = = = = = = = = = = = = = = = = = = = #
        for level, mult in enumerate(channel_mult):
            for _ in range(num_res_blocks):
                layers = [ ResBlock(ch,
                                    time_embed_dim,
                                    dropout,
                                    out_channels=mult * model_channels,
                                    dims=dims,
                                    use_checkpoint=use_checkpoint,
                                    use_scale_shift_norm=use_scale_shift_norm,) ]

                ch = mult * model_channels
                if ds in attention_resolutions:
                    dim_head = ch // num_heads
                    layers.append(SpatialTransformer(ch, key_dim=context_dim, value_dim=context_dim, n_heads=num_heads, d_head=dim_head, depth=transformer_depth, fuser_type=fuser_type, use_checkpoint=use_checkpoint))
                
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                input_block_chans.append(ch)

            if level != len(channel_mult) - 1: # will not go to this downsample branch in the last feature
                out_ch = ch
                self.input_blocks.append( TimestepEmbedSequential( Downsample(ch, conv_resample, dims=dims, out_channels=out_ch ) ) )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
        dim_head = ch // num_heads

        # self.input_blocks = [ C |  RT  RT  D  |  RT  RT  D  |  RT  RT  D  |   R  R   ]


        # = = = = = = = = = = = = = = = = = = = = BottleNeck = = = = = = = = = = = = = = = = = = = = #
        
        self.middle_block = TimestepEmbedSequential(
            ResBlock(ch,
                     time_embed_dim,
                     dropout,
                     dims=dims,
                     use_checkpoint=use_checkpoint,
                     use_scale_shift_norm=use_scale_shift_norm),
            SpatialTransformer(ch, key_dim=context_dim, value_dim=context_dim, n_heads=num_heads, d_head=dim_head, depth=transformer_depth, fuser_type=fuser_type, use_checkpoint=use_checkpoint),
            ResBlock(ch,
                     time_embed_dim,
                     dropout,
                     dims=dims,
                     use_checkpoint=use_checkpoint,
                     use_scale_shift_norm=use_scale_shift_norm))



        # = = = = = = = = = = = = = = = = = = = = Up Branch = = = = = = = = = = = = = = = = = = = = #

        
        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(num_res_blocks + 1):
                ich = input_block_chans.pop()
                layers = [ ResBlock(ch + ich,
                                    time_embed_dim,
                                    dropout,
                                    out_channels=model_channels * mult,
                                    dims=dims,
                                    use_checkpoint=use_checkpoint,
                                    use_scale_shift_norm=use_scale_shift_norm) ]
                ch = model_channels * mult
                
                if ds in attention_resolutions:
                    dim_head = ch // num_heads
                    layers.append( SpatialTransformer(ch, key_dim=context_dim, value_dim=context_dim, n_heads=num_heads, d_head=dim_head, depth=transformer_depth, fuser_type=fuser_type, use_checkpoint=use_checkpoint) )
                if level and i == num_res_blocks:
                    out_ch = ch
                    layers.append( Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) )
                    ds //= 2
                
                self.output_blocks.append(TimestepEmbedSequential(*layers))


        # self.output_blocks = [ R  R  RU | RT  RT  RTU |  RT  RT  RTU  |  RT  RT  RT  ]


        self.out = nn.Sequential(
            normalization(ch),
            nn.SiLU(),
            zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
        )

        # self.position_net = instantiate_from_config(grounding_tokenizer)
        from .text_grounding_net  import PositionNet
        self.position_net = PositionNet(in_dim=positive_len, out_dim=context_dim) 
        


        

    def restore_first_conv_from_SD(self):
        if self.first_conv_restorable:
            device = self.input_blocks[0][0].weight.device

            SD_weights = th.load("gligen/SD_input_conv_weight_bias.pth")
            self.GLIGEN_first_conv_state_dict = deepcopy(self.input_blocks[0][0].state_dict())

            self.input_blocks[0][0] = conv_nd(2, 4, 320, 3, padding=1)
            self.input_blocks[0][0].load_state_dict(SD_weights)
            self.input_blocks[0][0].to(device)

            self.first_conv_type = "SD"
        else:
            print("First conv layer is not restorable and skipped this process, probably because this is an inpainting model?")


    def restore_first_conv_from_GLIGEN(self):
        breakpoint() # TODO 


    def forward_position_net(self,input):
        # import pdb; pdb.set_trace()
        if ("boxes" in input):
            boxes, masks, text_embeddings = input["boxes"], input["masks"], input["text_embeddings"]
            _ , self.max_box, _ = text_embeddings.shape
        else: 
            dtype = input["x"].dtype
            batch = input["x"].shape[0]
            device = input["x"].device
            boxes = th.zeros(batch, self.max_box, 4,).type(dtype).to(device) 
            masks = th.zeros(batch, self.max_box).type(dtype).to(device) 
            text_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device) 
        if self.training and random.random() < 0.1: # random drop for guidance  
            boxes, masks, text_embeddings = boxes*0, masks*0, text_embeddings*0
  
        objs = self.position_net( boxes, masks, text_embeddings ) # B*N*C 

        return objs

    def forward_position_net_with_image(self,input):

        if ("boxes" in input):
            boxes = input["boxes"] 
            masks = input["masks"]
            text_masks = input["text_masks"]
            image_masks = input["image_masks"]
            text_embeddings = input["text_embeddings"]
            image_embeddings = input["image_embeddings"]
            _ , self.max_box, _ = text_embeddings.shape
        else: 
            dtype = input["x"].dtype
            batch = input["x"].shape[0]
            device = input["x"].device
            boxes = th.zeros(batch, self.max_box, 4,).type(dtype).to(device) 
            masks = th.zeros(batch, self.max_box).type(dtype).to(device)
            text_masks = th.zeros(batch, self.max_box).type(dtype).to(device) 
            image_masks = th.zeros(batch, self.max_box).type(dtype).to(device) 
            text_embeddings =  th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device) 
            image_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device) 
        
        if self.training and random.random() < 0.1: # random drop for guidance  
            boxes = boxes*0
            masks = masks*0
            text_masks = text_masks*0
            image_masks = image_masks*0
            text_embeddings = text_embeddings*0
            image_embeddings = image_embeddings*0
  
        objs = self.position_net( boxes, masks, text_masks, image_masks, text_embeddings, image_embeddings ) # B*N*C 
        
        return objs


    def forward(self, input,unc=False):
        
        if ("boxes" in input):
            # grounding_input = input["grounding_input"]
            boxes, masks, text_embeddings = input["boxes"], input["masks"], input["text_embeddings"]
            _ , self.max_box, _ = text_embeddings.shape
        else: 
            # Guidance null case
            # grounding_input = self.grounding_tokenizer_input.get_null_input()
            # boxes, masks, text_embeddings = input["boxes"]*0, input["masks"]*0, input["text_embeddings"]*0
            dtype = input["x"].dtype
            batch = input["x"].shape[0]
            device = input["x"].device
            boxes = th.zeros(batch, self.max_box, 4,).type(dtype).to(device) 
            masks = th.zeros(batch, self.max_box).type(dtype).to(device)
            text_masks = th.zeros(batch, self.max_box).type(dtype).to(device) 
            image_masks = th.zeros(batch, self.max_box).type(dtype).to(device) 
            text_embeddings =  th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device) 
            image_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device) 

        if self.training and random.random() < 0.1 : # random drop for guidance  
            boxes, masks, text_embeddings = boxes*0, masks*0, text_embeddings*0

        objs = self.position_net( boxes, masks, text_embeddings )  
        
        # Time embedding 
      
        t_emb = timestep_embedding(input["timesteps"], self.model_channels, repeat_only=False)
        emb = self.time_embed(t_emb)

        # input tensor  
        h = input["x"]
        t = input["timesteps"]
        if self.downsample_net != None and self.first_conv_type=="GLIGEN":
            temp  = self.downsample_net(input["grounding_extra_input"])
            h = th.cat( [h,temp], dim=1 )
        if self.is_inpaint:#self.inpaint_mode:
            if self.downsample_net != None:
                breakpoint() # TODO: think about this case 
            h = th.cat( [h, input["inpainting_extra_input"]], dim=1 )
        
        # Text input 
        context = input["context"]

        # Start forwarding 
        hs = []
        probs_first = []
        self_prob_list_first = []
        
        for module in self.input_blocks:
            h,prob, self_prob = module(h, emb, context, objs,t)
            hs.append(h)
            probs_first.append(prob)
            self_prob_list_first.append(self_prob)

        h,mid_prob, self_prob_list_second = self.middle_block(h, emb, context, objs,t)
        
        probs_third = []
        self_prob_list_third = []
        for module in self.output_blocks:
            h = th.cat([h, hs.pop()], dim=1)
            h, prob, self_prob = module(h, emb, context, objs,t)
            probs_third.append(prob)
            self_prob_list_third.append(self_prob)

        return self.out(h),probs_third , mid_prob,  probs_first, self_prob_list_first, [self_prob_list_second], self_prob_list_third