File size: 14,982 Bytes
7e5bd5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
# -*- coding: utf-8 -*-
"""
Created on Wed Sep 27 17:45:59 2023
env: dardos2
@author: forti

-Grafica training y validation sets para comparar eficiencia de pronostico
- Grafica con plotly y matplotlib.
-Genera df_reindexed con periodo semanal
-Calcula sigma y safety stock
- Calcula MOVING AVERAGE ( descomentar)

"""

import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
import plotly.io as pio
import plotly.express as px
from darts import TimeSeries
from darts.models import RandomForest
# from darts.models import NaiveDrift
# from darts.models import MovingAverageFilter
import streamlit as st
# import locale
from darts.metrics import mae, rmse
from PIL import Image


###########################################################################
@st.cache_data
def convert_df(df_new):
    # IMPORTANT: Cache the conversion to prevent computation on every rerun
    return df_new.to_csv().encode('utf-8')
###########################################################################


pio.renderers.default = "browser"

st.title(" 🏪 Super Playitas")
st.header("🤖 Pronósticos con Inteligencia Artificial 🤖")
df = None
uploaded_file = st.file_uploader("Seleccione su producto", type='xlsx')

if uploaded_file is not None:
    df = pd.read_excel(uploaded_file)
    # st.write(data)
    
if df is not None:

    ################ Limpieza de datos ###########################
    # df = pd.read_excel('marlboro-20.xlsx')
    # df = pd.read_excel('cocacola-600.xlsx')
    df.drop([0, 1, 2, 3, 4, 5], inplace=True)
    df.columns = df.iloc[0]
    df.drop(6, inplace=True)
    ###########################################################
    
    # Set to Spanish or English locale
    #locale.setlocale(locale.LC_TIME, "en_US.UTF-8")
    # locale.setlocale(locale.LC_TIME, "es_US.UTF-8")
    
    
    # Create a dictionary mapping Spanish month abbreviations to English
    month_dict = {
        'Ene': 'Jan',
        'Feb': 'Feb',
        'Mar': 'Mar',
        'Abr': 'Apr',
        'May': 'May',
        'Jun': 'Jun',
        'Jul': 'Jul',
        'Ago': 'Aug',
        'Sep': 'Sep',
        'Oct': 'Oct',
        'Nov': 'Nov',
        'Dic': 'Dec'
    }

    # Assume df is your DataFrame and 'date' is the column with dates
    df['Fecha'] = df['Fecha'].replace(month_dict, regex=True)
    
    # convert the date column into datetime
    df['Fecha'] = pd.to_datetime(df['Fecha'], format='%d/%b/%Y %I:%M %p', errors='coerce')
    
    # rename columns
    df.columns.values[2] = 'Cantidad-1'
    df.columns.values[5] = 'Cantidad-2'
    df.columns.values[8] = 'Cantidad-3'
    df['Cantidad-2'] = pd.to_numeric(df['Cantidad-2'], errors='coerce')
    
    # lee el ultimo valor de la columna de cantidad-3
    df['Cantidad-3'] = pd.to_numeric(df['Cantidad-3'], errors='coerce')
    inventario_neto = df['Cantidad-3'].iloc[-1]
    
    # drop NaN rows from column "Cantidad-2"
    df.dropna(subset=['Cantidad-2'], inplace=True)
    
    # drop negative values from "Cantidad-2"
    df = df[df['Cantidad-2'] >= 0]
    
    # Create a new column 'Fecha_sin_hora' with just the date
    df['Fecha_sin_hora'] = df['Fecha'].dt.date
    
    # Group by 'Fecha_sin_hora' and sum 'Cantidad-2'
    df_sum = df.groupby('Fecha_sin_hora')['Cantidad-2'].sum().reset_index()
    
    ###############################################################
    # # Create a new column 'Mes' with just the month and year
    # df['Mes'] = df['Fecha_sin_hora'].dt.to_period('M')
    
    # # Group by 'Mes' and sum 'Cantidad-2'
    # df_sum = df.groupby('Mes')['Cantidad-2'].sum().reset_index()
    
    ###############################################################
    
    # df_sum.drop(737, inplace=True)
    # df_sum = df_sum.iloc[699:800]
    
    
    
    
    
    ################################################################
    ######## Create a DataFrame with a new date range ############################
    
    # Create the date range
    # new_date_range = pd.date_range(start='2023-03-12', end='2023-08-11')
    new_date_range = pd.date_range(start=df_sum.iloc[0,0], end=df_sum.iloc[-1,0])
    
    # Convert the date range to a DataFrame
    #df_3 = pd.DataFrame({'Fecha': new_date_range})
    ##################################################################
    
    df_sum.set_index('Fecha_sin_hora', inplace=True)
    
    
    # Re-index with a new date-range for each group
    #df_reindexed = df_sum.apply(lambda x: x.set_index('Fecha_sin_hora').reindex(new_date_range))
    df_reindexed = df_sum.apply(lambda x: x.reindex(new_date_range))
    
    # Reset the index
    #df_reindexed = df_reindexed.reset_index(level=0, drop=True).reset_index()
    
    
    # Fill missing sales values with 0
    df_reindexed['Cantidad-2'] = df_reindexed['Cantidad-2'].fillna(0)
    
    
    #################################################################
    # Create a new column 'Semana'
    
    df_reindexed.reset_index(inplace=True)
    df_reindexed = df_reindexed.rename(columns={'index': 'Fecha'})
    df_reindexed['Semana'] = df_reindexed['Fecha'].dt.to_period('W')
    
    # Group by 'Semana' and sum 'Cantidad-2'
    df_reindexed = df_reindexed.groupby('Semana')['Cantidad-2'].sum().reset_index()
    # rename columns
    df_reindexed.columns.values[0] = 'Fecha'
    
    # ax = df_reindexed.plot(label='Historial')
    # plt.show()
    
    
    #hacer fecha el indice
    # df_reindexed.set_index('Fecha', inplace=True)
    df_reindexed['Fecha'] = df_reindexed['Fecha'].astype(str)
    df_reindexed['Fecha'] = df_reindexed['Fecha'].str.split('/').str[0]
    
    
    
    
    # usar para pronostico de las ultimas dos semanas. fecha automatizada
    # dt = pd.to_datetime(df_sum.index[1])
    # dt = dt + pd.Timedelta(days=1)
    #################################################################
    
    # Convert datetime to string to be able to use DARTS
    #df_sum['Fecha_sin_hora'] = df_sum['Fecha_sin_hora'].astype(str)
    
    
    ########## Reset the index.   Use only for daily df_reindexed ##################
    # df_reindexed['Fecha'] = df_reindexed.index
    # df_reindexed.reset_index(drop=True, inplace=True)
    # df_reindexed = df_reindexed[['Fecha', 'Cantidad-2']]
    
    
    # Create a TimeSeries object, specifying the time and value columns
    series = TimeSeries.from_dataframe(df_reindexed, "Fecha", 'Cantidad-2')
    # series = TimeSeries.from_dataframe(df_reindexed, freq="W")
    
    # Assuming df_reindexed is your DataFrame and it's indexed by date
    # series = TimeSeries.from_times_and_values(times=df_reindexed, values=df_reindexed['Cantidad-2'])
    
    
    
    # Set aside the last 16 days as a validation series
    train, val = series[:-15], series[-15:]
    
    #################### Train Forecasting Models ######################
    # Train baseline model
    # model_1 = NaiveDrift()
    # model_1.fit(series)
    
    # Train ML model
    model_2 = RandomForest(lags=20) #25 #55
    model_2a = RandomForest(lags=20)
    # model_2.fit(train)
    model_2.fit(series)
    model_2a.fit(train)
    
    # MOVING AVERAGE
    # model_3 = MovingAverageFilter(window=15)
    # filtered_series = model_3.filter(series)
    ####################################################################
    
    ################## Predict with Forecasting Models #################
    # Predict using baseline model
    # prediction_1 = model_1.predict(15)
    
    # Predict using RandomForest
    # prediction_2 = model_2.predict(len(val))
    prediction_2 = model_2.predict(15)
    prediction_2a = model_2a.predict(15)
    # df_4 = pd.DataFrame(prediction_2.pd_dataframe())
    # df_4 = df_4.reset_index(drop=True)
    ###################################################################
    
    ######## plot forecast from validation set ########################
    
    # converts datetime objects to pandas dataframes
    series_df = series.pd_dataframe()
    prediction_2_df = prediction_2.pd_dataframe()
    prediction_2a_df = prediction_2a.pd_dataframe()
    val_df = val.pd_dataframe()
    
    
    # series.plot(label="Historial de Ventas")
    # prediction_2a.plot(label="Pronóstico", low_quantile=0.05, high_quantile=0.95)
    
    # filtered_series.plot(label="Historial de Ventas")
    # series.plot(label="Historial de Ventas")
    
    # plt.xlabel('Fecha')
    # plt.ylabel('Ventas')
    # plt.legend()
    # plt.subplots_adjust(bottom=0.2)
    # plt.savefig("producto_forecast_2.png", dpi=200)
    
    
    # n=115
    # series_df = series_df.tail(n)
    
    # ax = series_df.plot(label='Historial')
    # prediction_2_df.plot(ax=ax, label='Pronostico')
    # plt.legend()
    # plt.show()
    
    
    ###############################################################################
    
    
    #########################Cacula std del forecast   ############################
    
    error = prediction_2a_df["Cantidad-2"] - val_df["Cantidad-2"]
    mean = error.mean()
    diff = error - mean
    diff_squared = diff.apply(lambda x:x**2).sum()
    std = np.sqrt(diff_squared/(len(diff)-1))
    safety_stock = 1.96*std
    
    
    ###############################################################################
    ##########################   metricas  ################################

    mae_1 = mae(val, prediction_2a)
    # mape_1 = mape(val, prediction_2a)
    rmse_1 = rmse(val, prediction_2a)
    
    
    ##################### Pronostico final ##################################
    
    promedio = prediction_2_df.mean()
    
    pronostico_promedio = promedio + safety_stock
    # semana = prediction_2_df.index[0]
    
    #redondea y  los numeros del df. si la borro siguie funcionando todo
    prediction_2_df = prediction_2_df.round().astype(int)
    safety_stock = safety_stock.round()
    
    ##################Grafica con plotly###########################################
    # df_borrar = df_sum +1
    # df_borrar = df_borrar.iloc[800:844]
    
    figure_01=px.line(series_df,y="Cantidad-2",)
    figure_01.layout.update(title_text=None,xaxis_rangeslider_visible=True)
    
    figure_02=px.line(prediction_2_df,y="Cantidad-2")
    figure_02.update_traces(line=dict(color='red'))
    
    figure_03=px.scatter(series_df,y="Cantidad-2",)
    figure_03.update_traces(marker=dict(color='DodgerBlue'))
    
    figure_04=px.scatter(prediction_2_df,y="Cantidad-2",)
    figure_04.update_traces(marker=dict(color='red'))
    
    # st.plotly_chart(figure_01)
    
    # Add figure_02 data to figure_01
    for trace in figure_02.data:
        figure_01.add_trace(trace)
        
    # Add figure_03 data to figure_01
    for trace in figure_03.data:
        figure_01.add_trace(trace)
        
    for trace in figure_04.data:
        figure_01.add_trace(trace)
    
    st.subheader(":blue[Historial] y :red[Pronóstico] de Ventas Semanal")
    

        
    st.plotly_chart(figure_01)
    
    ###############################################################################
    
    
    
    if mae_1 < 7:
    
        st.subheader("Pronóstico de las proximas 15 semanas:")
        prediction_2_total = prediction_2_df + safety_stock
        prediction_2_total.index = pd.to_datetime(prediction_2_total.index).date
        prediction_2_total.rename(columns={'Cantidad-2': 'Nivel de Inventario'}, inplace=True)

        prediction_2_total['Pronostico'] = prediction_2_df['Cantidad-2']
        # Create an array with the number repeated the desired number of times
        stock = np.full((len(prediction_2_total), 1), safety_stock)
        # Convert the array to a DataFrame
        stock_df = pd.DataFrame(stock, columns=['safety']).astype(int)
        
        prediction_2_total['Stock de Seguridad'] = stock_df['safety'].values
        prediction_2_total = prediction_2_total[['Pronostico', 'Stock de Seguridad', 'Nivel de Inventario']]
        prediction_2_total['Nivel de Inventario'] = prediction_2_total['Nivel de Inventario'].round().astype(int)
        st.table(prediction_2_total)

    
    else:
        st.subheader("Pronóstico de las proximas 15 semanas:")
        pronostico_promedio = pronostico_promedio.iloc[0]
        
        # Create an array with the number repeated the desired number of times
        pronostico_promedio = np.full((len(prediction_2_df), 1), pronostico_promedio)
        # Convert the array to a DataFrame
        pronostico_promedio_df = pd.DataFrame(pronostico_promedio, columns=['Nivel de Inventario'])
        
        prediction_2_df["Nivel de Inventario"] = pronostico_promedio_df['Nivel de Inventario'].values
        
        # Create an array with the number repeated the desired number of times
        stock = np.full((len(prediction_2_df), 1), safety_stock)
        # Convert the array to a DataFrame
        stock_df = pd.DataFrame(stock, columns=['safety']).astype(int)
        prediction_2_df['Stock de Seguridad'] = stock_df['safety'].values
        
        prediction_2_total = prediction_2_df
        prediction_2_total.index = pd.to_datetime(prediction_2_total.index).date
        prediction_2_total.rename(columns={'Cantidad-2': 'Pronostico'}, inplace=True)
        prediction_2_total = prediction_2_total[['Pronostico', 'Stock de Seguridad', 'Nivel de Inventario']]
        
        prediction_2_total['Nivel de Inventario'] = prediction_2_total['Nivel de Inventario'].round().astype(int)
        st.table(prediction_2_total)
    
    
 #################################################################################   
    
    csv = convert_df(prediction_2_total)    
    st.download_button(
       label="Descargar datos ⤵",
       data=csv,
       file_name='pronostico-producto.csv',
       mime='text/csv',
       )
    
    
    cantidad = round(prediction_2_total.iloc[0,0] - inventario_neto)
    
    if cantidad<0:
        cantidad =0
        
    # st.text("Cantidad =" + str(cantidad))
    st.subheader("Cantidad de producto a ordenar (por semana): ")
    # st.text("Cantidad = Pronostico - Inventario Neto")
    

    st.metric(label=":blue[Cantidad = Nivel de Inventario - Inventario Neto]", value=cantidad)
    st.write('\n')
    st.write('\n')
    st.write('\n')
    st.write('\n')
    st.write('\n')
    st.write('\n')
    st.write('\n')
    st.write('\n')
    st.write('\n')

    image = Image.open("magna.png")
    st.image(image, caption='Inteligencia Artificial para tu negocio')
    st.markdown("Contáctanos: www.magna-machina.com")
    

else:
    st.subheader("No ha seleccionado su producto.")
    st.write('\n')
    st.write('\n')
    st.write('\n')
    st.write('\n')
    st.write('\n')
    st.write('\n')
    st.write('\n')
    st.write('\n')
    st.write('\n')
    st.write('\n')
    st.write('\n')
    st.write('\n')
    st.write('\n')
    st.write('\n')
    st.write('\n')
    st.write('\n')
    image = Image.open("magna.png")
    st.image(image, caption='Inteligencia Artificial para tu negocio')
    st.markdown("Contáctanos: www.magna-machina.com")