Spaces:
Running
Running
File size: 1,546 Bytes
75ac94f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
from pathlib import Path
import pandas as pd
import streamlit as st
DATA_DIR = Path("examples/wbm_ev")
table = pd.read_csv(DATA_DIR / "summary.csv")
table = table.rename(
columns={
"model": "Model",
"rank": "Rank",
"rank-aggregation": "Rank aggr.",
"energy-diff-flip-times": "Derivative flips",
"tortuosity": "Tortuosity",
"spearman-compression-energy": "Spearman's coeff. (compression)",
"spearman-tension-energy": "Spearman's coeff. (tension)",
"spearman-compression-derivative": "Spearman's coeff. (compression derivative)",
"missing": "Missing",
},
)
table.set_index("Model", inplace=True)
s = (
table.style.background_gradient(
cmap="Blues",
subset=["Rank", "Rank aggr."],
).background_gradient(
cmap="Reds",
subset=[
"Spearman's coeff. (compression)",
],
).background_gradient(
cmap="Reds_r",
subset=[
"Spearman's coeff. (tension)",
"Spearman's coeff. (compression derivative)",
],
).background_gradient(
cmap="RdPu",
subset=["Tortuosity", "Derivative flips"],
).format(
"{:.5f}",
subset=[
"Spearman's coeff. (compression)",
"Spearman's coeff. (tension)",
"Spearman's coeff. (compression derivative)",
"Tortuosity",
"Derivative flips",
],
)
)
def render():
st.dataframe(
s,
use_container_width=True,
)
|