Spaces:
Running
Running
File size: 5,763 Bytes
1e50f35 51638da 1e50f35 1d1ee87 1e50f35 51638da 1d1ee87 51638da 00b56e2 51638da 1d1ee87 51638da 1e50f35 52c1bfb 1e50f35 51638da 1e50f35 51638da c7922c2 51638da 00b56e2 51638da 1e50f35 1d1ee87 1e50f35 c7922c2 1e50f35 1d1ee87 1e50f35 1d1ee87 ef47233 b7a7786 1d1ee87 1e50f35 1d1ee87 00b56e2 b7a7786 1e50f35 1d1ee87 1e50f35 b7a7786 ef47233 00b56e2 b7a7786 1e50f35 1d1ee87 1e50f35 1d1ee87 00b56e2 1e50f35 1d1ee87 b7a7786 1d1ee87 b7a7786 1d1ee87 00b56e2 c7922c2 1e50f35 1d1ee87 1e50f35 08a88d8 1e50f35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
"""
Define equation of state task.
https://github.com/materialsvirtuallab/matcalc/blob/main/matcalc/eos.py
"""
from __future__ import annotations
from typing import TYPE_CHECKING, Any
import numpy as np
from prefect import task
from prefect.cache_policies import INPUTS, TASK_SOURCE
from prefect.futures import wait
from prefect.results import ResultRecord
from prefect.runtime import task_run
from prefect.states import State
from ase import Atoms
from ase.filters import * # type: ignore
from ase.optimize import * # type: ignore
from ase.optimize.optimize import Optimizer
from mlip_arena.models import MLIPEnum
from mlip_arena.tasks.optimize import run as OPT
from pymatgen.analysis.eos import BirchMurnaghan
if TYPE_CHECKING:
from ase.filters import Filter
def _generate_task_run_name():
task_name = task_run.task_name
parameters = task_run.parameters
atoms = parameters["atoms"]
calculator_name = parameters["calculator_name"]
return f"{task_name}: {atoms.get_chemical_formula()} - {calculator_name}"
@task(
name="EOS", task_run_name=_generate_task_run_name, cache_policy=TASK_SOURCE + INPUTS
)
def run(
atoms: Atoms,
calculator_name: str | MLIPEnum,
calculator_kwargs: dict | None = None,
device: str | None = None,
optimizer: Optimizer | str = "BFGSLineSearch", # type: ignore
optimizer_kwargs: dict | None = None,
filter: Filter | str | None = "FrechetCell", # type: ignore
filter_kwargs: dict | None = None,
criterion: dict | None = None,
max_abs_strain: float = 0.1,
npoints: int = 11,
concurrent: bool = True,
persist_opt: bool = True,
cache_opt: bool = True,
) -> dict[str, Any] | State:
"""
Compute the equation of state (EOS) for the given atoms and calculator.
Args:
atoms: The input atoms.
calculator_name: The name of the calculator to use.
calculator_kwargs: Additional kwargs to pass to the calculator.
device: The device to use.
optimizer: The optimizer to use.
optimizer_kwargs: Additional kwargs to pass to the optimizer.
filter: The filter to use.
filter_kwargs: Additional kwargs to pass to the filter.
criterion: The criterion to use.
max_abs_strain: The maximum absolute strain to use.
npoints: The number of points to sample.
concurrent: Whether to relax multiple structures concurrently.
persist_opt: Whether to persist the optimization results.
cache_opt: Whether to cache the intermediate optimization results.
Returns:
A dictionary containing the EOS data, bulk modulus, equilibrium volume, and equilibrium energy if successful. Otherwise, a prefect state object.
"""
OPT_ = OPT.with_options(
refresh_cache=not cache_opt,
persist_result=persist_opt,
)
state = OPT_(
atoms=atoms,
calculator_name=calculator_name,
calculator_kwargs=calculator_kwargs,
device=device,
optimizer=optimizer,
optimizer_kwargs=optimizer_kwargs,
filter=filter,
filter_kwargs=filter_kwargs,
criterion=criterion,
return_state=True,
)
if state.is_failed():
return state
first_relax = state.result(raise_on_failure=False)
if isinstance(first_relax, ResultRecord):
relaxed = first_relax.result["atoms"]
else:
relaxed = first_relax["atoms"]
# p0 = relaxed.get_positions()
c0 = relaxed.get_cell()
factors = np.linspace(1 - max_abs_strain, 1 + max_abs_strain, npoints) ** (1 / 3)
if concurrent:
futures = []
for f in factors:
atoms = relaxed.copy()
atoms.set_cell(c0 * f, scale_atoms=True)
future = OPT_.submit(
atoms=atoms,
calculator_name=calculator_name,
calculator_kwargs=calculator_kwargs,
device=device,
optimizer=optimizer,
optimizer_kwargs=optimizer_kwargs,
filter=None,
filter_kwargs=None,
criterion=criterion,
)
futures.append(future)
wait(futures)
results = [
f.result(raise_on_failure=False)
for f in futures
if future.state.is_completed()
]
else:
states = []
for f in factors:
atoms = relaxed.copy()
atoms.set_cell(c0 * f, scale_atoms=True)
state = OPT_(
atoms=atoms,
calculator_name=calculator_name,
calculator_kwargs=calculator_kwargs,
device=device,
optimizer=optimizer,
optimizer_kwargs=optimizer_kwargs,
filter=None,
filter_kwargs=None,
criterion=criterion,
return_state=True,
)
states.append(state)
results = [s.result(raise_on_failure=False) for s in states if s.is_completed()]
results = [r.result if isinstance(r, ResultRecord) else r for r in results]
volumes = [r["atoms"].get_volume() for r in results]
energies = [r["atoms"].get_potential_energy() for r in results]
volumes, energies = map(
list,
zip(
*sorted(zip(volumes, energies, strict=True), key=lambda i: i[0]),
strict=True,
),
)
bm = BirchMurnaghan(volumes=volumes, energies=energies)
bm.fit()
return {
"atoms": relaxed,
"calculator_name": calculator_name,
"eos": {"volumes": volumes, "energies": energies},
"K": bm.b0_GPa,
"b0": bm.b0,
"b1": bm.b1,
"e0": bm.e0,
"v0": bm.v0,
}
|