Spaces:
Running
Running
File size: 11,158 Bytes
35c7a66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
"""
Define equivariance testing task.
"""
from __future__ import annotations
from collections.abc import Sequence
from pathlib import Path
import numpy as np
from ase import Atoms
from prefect import task
from scipy.spatial.transform import Rotation as R
from tqdm import tqdm
def generate_random_unit_vector():
"""Generate a random unit vector."""
vec = np.random.normal(0, 1, 3)
return vec / np.linalg.norm(vec)
def rotate_molecule_arbitrary(
atoms: Atoms, angle: float, axis: np.ndarray
) -> tuple[Atoms, np.ndarray]:
"""Rotate molecule around arbitrary axis."""
rotated_atoms = atoms.copy()
positions = rotated_atoms.get_positions()
rot = R.from_rotvec(np.radians(angle) * axis)
rotation_mat = rot.as_matrix()
rotated_positions = rot.apply(positions)
rotated_atoms.set_positions(rotated_positions)
cell = atoms.get_cell()
rotated_cell = rot.apply(cell)
rotated_atoms.set_cell(rotated_cell)
return rotated_atoms, rotation_mat
def compare_forces(
original_forces: np.ndarray,
rotated_forces: np.ndarray,
rotation_mat: np.ndarray,
zero_threshold: float = 1e-10,
) -> tuple[float, np.ndarray, np.ndarray, np.ndarray]:
"""
Compare forces before and after rotation, with handling of 0 force case.
Args:
original_forces: Forces before rotation (N x 3 array)
rotated_forces: Forces after rotation (N x 3 array)
rotation_mat: 3 x 3 rotation matrix
zero_threshold: Threshold below which forces are considered zero
Returns:
tuple containing:
- mae: Mean absolute error between forces
- cosine_similarity: Cosine similarity between force vectors
"""
rotated_original_forces = np.dot(original_forces, rotation_mat.T)
force_diff = rotated_original_forces - rotated_forces
mae = np.mean(np.abs(force_diff))
original_magnitudes = np.linalg.norm(rotated_original_forces, axis=1)
rotated_magnitudes = np.linalg.norm(rotated_forces, axis=1)
zero_original = original_magnitudes < zero_threshold
zero_rotated = rotated_magnitudes < zero_threshold
both_zero = zero_original & zero_rotated
either_zero = zero_original | zero_rotated
one_zero = either_zero & ~both_zero
cosine_similarity = np.zeros(len(original_forces))
valid_forces = ~either_zero
if np.any(valid_forces):
norms_product = np.linalg.norm(
rotated_original_forces[valid_forces], axis=1
) * np.linalg.norm(rotated_forces[valid_forces], axis=1)
dot_products = np.sum(
rotated_original_forces[valid_forces] * rotated_forces[valid_forces], axis=1
)
cosine_similarity[valid_forces] = dot_products / norms_product
# If both forces are 0, cosine similarity should be 1. If one is 0, we take the conservative -1.
cosine_similarity[both_zero] = 1.0
cosine_similarity[one_zero] = -1.0
return mae, cosine_similarity
def save_molecule_results(
aggregate_results: dict, idx_list: np.ndarray, save_path: str | Path
) -> None:
"""
Save all molecule results from equivariance testing to .npy files.
Save the index list of the atoms for further analysis.
Args:
aggregate_results: Dictionary containing the aggregated results from run()
idx_list: List of the indices of the atoms in the original dataset
save_path: Path to save the .npy files
"""
save_path = Path(save_path)
save_path.parent.mkdir(parents=True, exist_ok=True)
all_molecule_results = aggregate_results["molecule_results"]
rotation_angles = list(all_molecule_results[0]["results_by_angle"].keys())
num_molecules = len(all_molecule_results)
num_angles = len(rotation_angles)
num_random_axes = len(
all_molecule_results[0]["results_by_angle"][rotation_angles[0]]["maes"]
)
num_atoms = len(
all_molecule_results[0]["results_by_angle"][rotation_angles[0]][
"cosine_similarities"
][0]
)
maes = np.zeros((num_molecules, num_angles, num_random_axes))
cosine_similarities = np.zeros((num_molecules, num_angles, num_random_axes))
for mol_idx, molecule in enumerate(all_molecule_results):
for angle_idx, angle in enumerate(rotation_angles):
angle_results = molecule["results_by_angle"][angle]
maes[mol_idx, angle_idx, :] = angle_results["maes"]
cosine_similarities[mol_idx, angle_idx, :] = np.mean(
angle_results["cosine_similarities"], axis=-1
)
np.save(save_path.with_name(f"{save_path.stem}_maes.npy"), maes)
np.save(
save_path.with_name(f"{save_path.stem}_cosine_similarities.npy"),
cosine_similarities,
)
np.save(save_path.with_name(f"{save_path.stem}_idx_list.npy"), idx_list)
@task(
name="Equivariance testing",
task_run_name=_generate_task_run_name,
cache_policy=TASK_SOURCE + INPUTS,
)
def run(
atoms_list: Sequence[Atoms],
idx_list: np.ndarray,
calculator: BaseCalculator,
save_path: str | Path | None = None,
rotation_angles: list[float] | np.ndarray = None,
num_random_axes: int = 100,
threshold: float = 1e-3,
seed: int | None = None,
) -> dict:
"""
Test equivariance of force predictions under rotations for multiple structures.
Args:
atoms_list: List of input atomic structures
idx_list: List of the indices of the atoms in the original dataset
calculator: Calculator to use
num_rotations: Number of random rotations to test
rotation_angle: Angle of rotation in degrees
threshold: Threshold for considering forces equivariant
seed: Random seed
Returns:
Dictionary containing test results
"""
if seed is not None:
np.random.seed(seed)
if rotation_angles is None:
rotation_angles = np.arange(30, 361, 30)
rotation_angles = np.array(rotation_angles)
all_results = []
cross_molecule_cosine_sims = {angle: [] for angle in rotation_angles}
cross_molecule_mae = {angle: [] for angle in rotation_angles}
rotation_axes = [generate_random_unit_vector() for _ in range(num_random_axes)]
total_tests = len(atoms_list) * len(rotation_angles) * num_random_axes
pbar = tqdm(total=total_tests, desc="Testing rotations")
for atom_idx, atoms in enumerate(atoms_list):
atoms = atoms.copy()
atoms.calc = calculator
original_forces = atoms.get_forces()
results_by_angle = {
angle: {
"mae": [],
"cosine_similarities": [],
"passed_tests": 0,
"passed_mae": 0,
"passed_cosine_similarity": 0,
}
for angle in rotation_angles
}
# Test each angle with multiple random axes
for angle in rotation_angles:
for axis in rotation_axes:
rotated_atoms, rotation_mat = rotate_molecule_arbitrary(
atoms, angle, axis
)
rotated_atoms.calc = calculator
rotated_forces = rotated_atoms.get_forces()
mae, cosine_similarity = compare_forces(
original_forces, rotated_forces, rotation_mat
)
results_by_angle[angle]["mae"].append(mae)
results_by_angle[angle]["cosine_similarities"].append(cosine_similarity)
cross_molecule_cosine_sims[angle].append(
float(np.mean(cosine_similarity))
)
cross_molecule_mae[angle].append(float(np.mean(mae)))
mae_check = mae < threshold
cosine_check = all(cosine_similarity > (1 - threshold))
results_by_angle[angle]["passed_tests"] += int(
mae_check and cosine_check
)
results_by_angle[angle]["passed_mae"] += int(mae_check)
results_by_angle[angle]["passed_cosine_similarity"] += int(cosine_check)
pbar.update(1)
# Compute summary statistics
for angle in rotation_angles:
results = results_by_angle[angle]
results["mean_cosine_similarity"] = float(
np.mean(results["cosine_similarities"])
)
results["avg_mae"] = float(np.mean(results["mae"]))
results["equivariant_ratio"] = results["passed_tests"] / num_random_axes
results["mae_passed_ratio"] = results["passed_mae"] / num_random_axes
results["cosine_passed_ratio"] = (
results["passed_cosine_similarity"] / num_random_axes
)
results["passed"] = results["passed_tests"] == num_random_axes
results["passed_mae"] = results["passed_mae"] == num_random_axes
results["passed_cosine_similarity"] = (
results["passed_cosine_similarity"] == num_random_axes
)
results["maes"] = [float(x) for x in results["mae"]]
results["cosine_similarities"] = [
[float(y) for y in x] for x in results["cosine_similarities"]
]
molecule_results = {
"mol_idx": idx_list[atom_idx],
"results_by_angle": results_by_angle,
"all_passed": all(
results_by_angle[angle]["passed"] for angle in rotation_angles
),
"avg_cosine_similarity_by_molecule": float(
np.mean(
[
results_by_angle[angle]["mean_cosine_similarity"]
for angle in rotation_angles
]
)
),
"avg_mae_by_molecule": float(
np.mean(
[results_by_angle[angle]["avg_mae"] for angle in rotation_angles]
)
),
"overall_equivariant_ratio": float(
np.mean(
[
results_by_angle[angle]["equivariant_ratio"]
for angle in rotation_angles
]
)
),
}
all_results.append(molecule_results)
pbar.close()
aggregate_results = {
"num_molecules": len(atoms_list),
"all_molecules_passed": all(result["all_passed"] for result in all_results),
"average_equivariant_ratio": float(
np.mean([result["overall_equivariant_ratio"] for result in all_results])
),
"average_cosine_similarity_by_angle": {
angle: float(np.mean(sims))
for angle, sims in cross_molecule_cosine_sims.items()
},
"average_mae_by_angle": {
angle: float(np.mean(diffs)) for angle, diffs in cross_molecule_mae.items()
},
"molecule_results": all_results,
}
if save_path:
save_molecule_results(aggregate_results, idx_list, save_path)
np.save(
str(save_path.with_name(f"{save_path.stem}_molecule_results.npy")),
all_results,
)
return aggregate_results
|