File size: 13,826 Bytes
2f7e23a
51638da
1effaf5
2f7e23a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1effaf5
1d1ee87
2f7e23a
1effaf5
2f7e23a
 
51638da
1d1ee87
51638da
 
 
 
 
 
2f7e23a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52c1bfb
 
2f7e23a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1effaf5
2f7e23a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51638da
 
 
 
 
 
 
 
 
 
 
 
 
1d1ee87
 
51638da
 
2f7e23a
 
 
 
 
 
 
 
 
51638da
4817e63
51638da
 
2f7e23a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51638da
2f7e23a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd24ea1
2f7e23a
 
 
 
 
 
 
 
4817e63
2f7e23a
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
"""
Define molecular dynamics task.

This script has been adapted from Atomate2 MLFF MD workflow written by Aaron Kaplan and Yuan Chiang
https://github.com/materialsproject/atomate2/blob/main/src/atomate2/forcefields/md.py

atomate2 Copyright (c) 2015, The Regents of the University of
California, through Lawrence Berkeley National Laboratory (subject
to receipt of any required approvals from the U.S. Dept. of Energy).
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

(1) Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with
the distribution.

(3) Neither the name of the University of California, Lawrence
Berkeley National Laboratory, U.S. Dept. of Energy nor the names of
its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes,
patches, or upgrades to the features, functionality or performance
of the source code ("Enhancements") to anyone; however, if you
choose to make your Enhancements available either publicly, or
directly to Lawrence Berkeley National Laboratory or its
contributors, without imposing a separate written license agreement
for such Enhancements, then you hereby grant the following license:
a  non-exclusive, royalty-free perpetual license to install, use,
modify, prepare derivative works, incorporate into other computer
software, distribute, and sublicense such enhancements or derivative
works thereof, in binary and source code form.
"""

from __future__ import annotations

from collections.abc import Sequence
from datetime import datetime
from pathlib import Path
from typing import Literal

import numpy as np
from prefect import task
from prefect.cache_policies import INPUTS, TASK_SOURCE
from prefect.runtime import task_run
from scipy.interpolate import interp1d
from scipy.linalg import schur
from torch_dftd.torch_dftd3_calculator import TorchDFTD3Calculator
from tqdm.auto import tqdm

from ase import Atoms, units
from ase.calculators.calculator import Calculator
from ase.calculators.mixing import SumCalculator
from ase.io import read
from ase.io.trajectory import Trajectory
from ase.md.andersen import Andersen
from ase.md.langevin import Langevin
from ase.md.md import MolecularDynamics
from ase.md.npt import NPT
from ase.md.nptberendsen import NPTBerendsen
from ase.md.nvtberendsen import NVTBerendsen
from ase.md.velocitydistribution import (
    MaxwellBoltzmannDistribution,
    Stationary,
    ZeroRotation,
)
from ase.md.verlet import VelocityVerlet
from mlip_arena.models import MLIPEnum
from mlip_arena.models.utils import get_freer_device

_valid_dynamics: dict[str, tuple[str, ...]] = {
    "nve": ("velocityverlet",),
    "nvt": ("nose-hoover", "langevin", "andersen", "berendsen"),
    "npt": ("nose-hoover", "berendsen"),
}

_preset_dynamics: dict = {
    "nve_velocityverlet": VelocityVerlet,
    "nvt_andersen": Andersen,
    "nvt_berendsen": NVTBerendsen,
    "nvt_langevin": Langevin,
    "nvt_nose-hoover": NPT,
    "npt_berendsen": NPTBerendsen,
    "npt_nose-hoover": NPT,
}


def _interpolate_quantity(values: Sequence | np.ndarray, n_pts: int) -> np.ndarray:
    """Interpolate temperature / pressure on a schedule."""
    n_vals = len(values)
    return np.interp(
        np.linspace(0, n_vals - 1, n_pts + 1),
        np.linspace(0, n_vals - 1, n_vals),
        values,
    )


def _get_ensemble_schedule(
    ensemble: Literal["nve", "nvt", "npt"] = "nvt",
    n_steps: int = 1000,
    temperature: float | Sequence | np.ndarray | None = 300.0,
    pressure: float | Sequence | np.ndarray | None = None,
) -> tuple[np.ndarray, np.ndarray]:
    if ensemble == "nve":
        # Disable thermostat and barostat
        temperature = np.nan
        pressure = np.nan
        t_schedule = np.full(n_steps + 1, temperature)
        p_schedule = np.full(n_steps + 1, pressure)
        return t_schedule, p_schedule

    if isinstance(temperature, Sequence) or (
        isinstance(temperature, np.ndarray) and temperature.ndim == 1
    ):
        t_schedule = _interpolate_quantity(temperature, n_steps)
    # NOTE: In ASE Langevin dynamics, the temperature are normally
    # scalars, but in principle one quantity per atom could be specified by giving
    # an array. This is not implemented yet here.
    else:
        t_schedule = np.full(n_steps + 1, temperature)

    if ensemble == "nvt":
        pressure = np.nan
        p_schedule = np.full(n_steps + 1, pressure)
        return t_schedule, p_schedule

    if isinstance(pressure, Sequence) or (
        isinstance(pressure, np.ndarray) and pressure.ndim == 1
    ):
        p_schedule = _interpolate_quantity(pressure, n_steps)
    elif isinstance(pressure, np.ndarray) and pressure.ndim == 4:
        p_schedule = interp1d(np.arange(n_steps + 1), pressure, kind="linear")
        assert isinstance(p_schedule, np.ndarray)
    else:
        p_schedule = np.full(n_steps + 1, pressure)

    return t_schedule, p_schedule


def _get_ensemble_defaults(
    ensemble: Literal["nve", "nvt", "npt"],
    dynamics: str | MolecularDynamics,
    t_schedule: np.ndarray,
    p_schedule: np.ndarray,
    ase_md_kwargs: dict | None = None,
) -> dict:
    """Update ASE MD kwargs"""
    ase_md_kwargs = ase_md_kwargs or {}

    if ensemble == "nve":
        ase_md_kwargs.pop("temperature", None)
        ase_md_kwargs.pop("temperature_K", None)
        ase_md_kwargs.pop("externalstress", None)
    elif ensemble == "nvt":
        ase_md_kwargs["temperature_K"] = t_schedule[0]
        ase_md_kwargs.pop("externalstress", None)
    elif ensemble == "npt":
        ase_md_kwargs["temperature_K"] = t_schedule[0]
        ase_md_kwargs["externalstress"] = p_schedule[0]  # * 1e3 * units.bar

    if isinstance(dynamics, str) and dynamics.lower() == "langevin":
        ase_md_kwargs["friction"] = ase_md_kwargs.get(
            "friction",
            10.0 * 1e-3 / units.fs,  # Same default as in VASP: 10 ps^-1
        )

    return ase_md_kwargs


def _generate_task_run_name():
    task_name = task_run.task_name
    parameters = task_run.parameters

    atoms = parameters["atoms"]
    calculator_name = parameters["calculator_name"]

    return f"{task_name}: {atoms.get_chemical_formula()} - {calculator_name}"


@task(
    name="MD",
    task_run_name=_generate_task_run_name,
    cache_policy=TASK_SOURCE + INPUTS
    # cache_key_fn=task_input_hash,
    # cache_expiration=timedelta(days=1)
)
def run(
    atoms: Atoms,
    calculator_name: str | MLIPEnum,
    calculator_kwargs: dict | None,
    dispersion: str | None = None,
    dispersion_kwargs: dict | None = None,
    device: str | None = None,
    ensemble: Literal["nve", "nvt", "npt"] = "nvt",
    dynamics: str | MolecularDynamics = "langevin",
    time_step: float | None = None,  # fs
    total_time: float = 1000,  # fs
    temperature: float | Sequence | np.ndarray | None = 300.0,  # K
    pressure: float | Sequence | np.ndarray | None = None,  # eV/A^3
    ase_md_kwargs: dict | None = None,
    md_velocity_seed: int | None = None,
    zero_linear_momentum: bool = True,
    zero_angular_momentum: bool = True,
    traj_file: str | Path | None = None,
    traj_interval: int = 1,
    restart: bool = True,
):
    device = device or str(get_freer_device())

    print(f"Using device: {device}")

    calculator_kwargs = calculator_kwargs or {}

    if isinstance(calculator_name, MLIPEnum) and calculator_name in MLIPEnum:
        assert issubclass(calculator_name.value, Calculator)
        calc = calculator_name.value(**calculator_kwargs)
    elif (
        isinstance(calculator_name, str) and calculator_name in MLIPEnum._member_names_
    ):
        calc = MLIPEnum[calculator_name].value(**calculator_kwargs)
    else:
        raise ValueError(f"Invalid calculator: {calculator_name}")

    print(f"Using calculator: {calc}")

    dispersion_kwargs = dispersion_kwargs or {}

    dispersion_kwargs.update({"device": device})

    if dispersion is not None:
        disp_calc = TorchDFTD3Calculator(
            **dispersion_kwargs,
        )
        calc = SumCalculator([calc, disp_calc])

        print(f"Using dispersion: {dispersion}")

    atoms.calc = calc

    if time_step is None:
        # If a structure contains an isotope of hydrogen, set default `time_step`
        # to 0.5 fs, and 2 fs otherwise.
        has_h_isotope = "H" in atoms.get_chemical_symbols()
        time_step = 0.5 if has_h_isotope else 2.0

    n_steps = int(total_time / time_step)
    target_steps = n_steps

    t_schedule, p_schedule = _get_ensemble_schedule(
        ensemble=ensemble,
        n_steps=n_steps,
        temperature=temperature,
        pressure=pressure,
    )

    ase_md_kwargs = _get_ensemble_defaults(
        ensemble=ensemble,
        dynamics=dynamics,
        t_schedule=t_schedule,
        p_schedule=p_schedule,
        ase_md_kwargs=ase_md_kwargs,
    )

    if isinstance(dynamics, str):
        # Use known dynamics if `self.dynamics` is a str
        dynamics = dynamics.lower()
        if dynamics not in _valid_dynamics[ensemble]:
            raise ValueError(
                f"{dynamics} thermostat not available for {ensemble}."
                f"Available {ensemble} thermostats are:"
                " ".join(_valid_dynamics[ensemble])
            )
        if ensemble == "nve":
            dynamics = "velocityverlet"
        md_class = _preset_dynamics[f"{ensemble}_{dynamics}"]
    elif dynamics is MolecularDynamics:
        md_class = dynamics
    else:
        raise ValueError(f"Invalid dynamics: {dynamics}")

    if md_class is NPT:
        # Note that until md_func is instantiated, isinstance(md_func,NPT) is False
        # ASE NPT implementation requires upper triangular cell
        u, _ = schur(atoms.get_cell(complete=True), output="complex")
        atoms.set_cell(u.real, scale_atoms=True)

    last_step = 0

    if traj_file is not None:
        traj_file = Path(traj_file)
        traj_file.parent.mkdir(parents=True, exist_ok=True)

        if restart and traj_file.exists():
            try:
                traj = read(traj_file, index=":")
                last_atoms = traj[-1]
                assert isinstance(last_atoms, Atoms)
                last_step = last_atoms.info.get("step", len(traj) * traj_interval)
                n_steps -= last_step
                traj = Trajectory(traj_file, "a", atoms)
                atoms.set_positions(last_atoms.get_positions())
                atoms.set_momenta(last_atoms.get_momenta())
            except Exception:
                traj = Trajectory(traj_file, "w", atoms)

                if not np.isnan(t_schedule).any():
                    MaxwellBoltzmannDistribution(
                        atoms=atoms,
                        temperature_K=t_schedule[last_step],
                        rng=np.random.default_rng(seed=md_velocity_seed),
                    )

                if zero_linear_momentum:
                    Stationary(atoms)
                if zero_angular_momentum:
                    ZeroRotation(atoms)
        else:
            traj = Trajectory(traj_file, "w", atoms)

            if not np.isnan(t_schedule).any():
                MaxwellBoltzmannDistribution(
                    atoms=atoms,
                    temperature_K=t_schedule[last_step],
                    rng=np.random.default_rng(seed=md_velocity_seed),
                )

            if zero_linear_momentum:
                Stationary(atoms)
            if zero_angular_momentum:
                ZeroRotation(atoms)

    md_runner = md_class(
        atoms=atoms,
        timestep=time_step * units.fs,
        **ase_md_kwargs,
    )

    if traj_file is not None:
        md_runner.attach(traj.write, interval=traj_interval)

    with tqdm(total=n_steps) as pbar:

        def _callback(dyn: MolecularDynamics = md_runner) -> None:
            step = last_step + dyn.nsteps
            dyn.atoms.info["restart"] = last_step
            dyn.atoms.info["datetime"] = datetime.now()
            dyn.atoms.info["step"] = step
            dyn.atoms.info["target_steps"] = target_steps
            if ensemble == "nve":
                return
            dyn.set_temperature(temperature_K=t_schedule[step])
            if ensemble == "nvt":
                return
            dyn.set_stress(p_schedule[step])
            pbar.update()

        md_runner.attach(_callback, interval=1)

        start_time = datetime.now()
        md_runner.run(steps=n_steps)
        end_time = datetime.now()

    if traj_file is not None:
        traj.close()

    return {
        "atoms": atoms,
        "runtime": end_time - start_time,
        "n_steps": n_steps,
    }