File size: 4,320 Bytes
2100e49
 
623f47a
2100e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
623f47a
 
 
 
 
2100e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
623f47a
2100e49
34fa973
2100e49
 
 
 
 
 
 
ffd09d9
623f47a
2100e49
 
 
 
 
34fa973
2100e49
 
 
 
 
 
 
623f47a
2100e49
34fa973
2100e49
 
 
 
 
 
 
 
 
 
 
34fa973
2100e49
 
 
 
 
 
 
 
 
ffd09d9
623f47a
2100e49
 
 
 
 
 
 
 
 
 
 
 
34fa973
623f47a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34fa973
 
 
 
aacb559
 
34fa973
 
aacb559
 
34fa973
aacb559
 
623f47a
34fa973
 
 
 
 
aacb559
 
34fa973
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from pathlib import Path

import numpy as np
import pandas as pd
import plotly.colors as pcolors
import plotly.graph_objects as go
import streamlit as st

from mlip_arena.models import REGISTRY

DATA_DIR = Path("mlip_arena/tasks/combustion")


st.markdown("""
# Combustion
""")

st.markdown("### Methods")
container = st.container(border=True)
valid_models = [model for model, metadata in REGISTRY.items() if Path(__file__).stem in metadata.get("gpu-tasks", [])]

models = container.multiselect(
    "MLIPs", 
    valid_models, 
    ["MACE-MP(M)", "CHGNet", "M3GNet", "SevenNet", "ORB", "EquiformerV2(OC22)", "eSCN(OC20)"]
)

st.markdown("### Settings")
vis = st.container(border=True)
# Get all attributes from pcolors.qualitative
all_attributes = dir(pcolors.qualitative)
color_palettes = {
    attr: getattr(pcolors.qualitative, attr)
    for attr in all_attributes
    if isinstance(getattr(pcolors.qualitative, attr), list)
}
color_palettes.pop("__all__", None)

palette_names = list(color_palettes.keys())
palette_colors = list(color_palettes.values())

palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)

color_sequence = color_palettes[palette_name]

if not models:
    st.stop()

families = [REGISTRY[str(model)]["family"] for model in models]

dfs = [
    pd.read_json(DATA_DIR / family.lower() / "hydrogen.json")
    for family in families
]
df = pd.concat(dfs, ignore_index=True)
df.drop_duplicates(inplace=True, subset=["formula", "method"])

method_color_mapping = {
    method: color_sequence[i % len(color_sequence)]
    for i, method in enumerate(df["method"].unique())
}

###

# Number of products
fig = go.Figure()

for method in df["method"].unique():
    row = df[df["method"] == method].iloc[0]
    fig.add_trace(
        go.Scatter(
            x=row["timestep"],
            y=row["nproducts"],
            mode="lines",
            name=method,
            line=dict(color=method_color_mapping[method]),
            showlegend=True,
        ),
    )

fig.update_layout(
    title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)",
    xaxis_title="Timestep",
    yaxis_title="Number of water molecules",
)

st.plotly_chart(fig)

# tempearture

fig = go.Figure()

for method in df["method"].unique():
    row = df[df["method"] == method].iloc[0]
    fig.add_trace(
        go.Scatter(
            x=row["timestep"],
            y=row["temperatures"],
            mode="markers",
            name=method,
            line=dict(color=method_color_mapping[method]),
            showlegend=True,
        ),
    )

target_steps = df["target_steps"].iloc[0]
fig.add_trace(
    go.Line(
        x=[0, target_steps/3, target_steps/3*2, target_steps],
        y=[300, 3000, 3000, 300],
        mode="lines",
        name="Target",
        line=dict(
            dash="dash",
        ),
        showlegend=True,
    ),
)

fig.update_layout(
    title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)",
    xaxis_title="Timestep",
    yaxis_title="Temperatures",
    yaxis2=dict(
        title="Product Percentage (%)",
        overlaying="y",
        side="right",
        range=[0, 100],
        tickmode="sync"
    )
    # template="plotly_dark",
)

st.plotly_chart(fig)

# Final reaction rate

fig = go.Figure()

# df["yield"] = np.array(df["nproducts"]) / 128 * 100

df = df.sort_values("yield", ascending=True)

fig.add_trace(
    go.Bar(
        x=df["yield"] * 100,
        y=df["method"],
        opacity=0.75,
        orientation="h",
        marker=dict(color=[method_color_mapping[method] for method in df["method"]]),
        text=[f"{y:.2f} %" for y in df["yield"] * 100],
    )
)

fig.update_layout(
    title="Reaction yield (2H2 + O2 -> 2H2O, 64 units)",
    xaxis_title="Yield (%)",
    yaxis_title="Method",
)

st.plotly_chart(fig)

# MD runtime speed

fig = go.Figure()

df = df.sort_values("steps_per_second", ascending=True)

fig.add_trace(
    go.Bar(
        x=df["steps_per_second"],
        y=df["method"],
        opacity=0.75,
        orientation="h",
        marker=dict(color=[method_color_mapping[method] for method in df["method"]]),
        text=df["steps_per_second"].round(1)
    )
)

fig.update_layout(
    title="MD runtime speed (on single A100 GPU)",
    xaxis_title="Steps per second",
    yaxis_title="Method",
)

st.plotly_chart(fig)