Spaces:
Running
Running
File size: 40,132 Bytes
bf128ef 27912a5 70472e2 27912a5 9d86235 27912a5 41d374a bd1ed7a 41d374a bd1ed7a d481bd3 bf128ef 3ffb1ae 263ab21 3ffb1ae 263ab21 3ffb1ae bf128ef 9d86235 481db5b 263ab21 1688922 481db5b d27d543 481db5b 9d86235 27912a5 9d86235 27912a5 70472e2 2cb3b25 70472e2 27912a5 70472e2 27912a5 70472e2 27912a5 263ab21 481db5b 263ab21 481db5b bf128ef 27912a5 aea28ce bf128ef 9d86235 aea28ce 9d86235 aea28ce 9d86235 aea28ce 9d86235 27912a5 70472e2 27912a5 70472e2 27912a5 9d86235 1764cf7 263ab21 9d86235 8fb911c d481bd3 27912a5 9d86235 70472e2 9d86235 70472e2 9d86235 70472e2 263ab21 70472e2 27912a5 70472e2 27912a5 70472e2 263ab21 70472e2 263ab21 9d86235 d481bd3 bf128ef d481bd3 27912a5 9d86235 d481bd3 9d86235 bf128ef 27912a5 44554ea d481bd3 aea28ce 27912a5 9d86235 aea28ce 9d86235 27912a5 9d86235 d481bd3 8fb911c 9d86235 8fb911c d481bd3 9d86235 8fb911c d481bd3 8fb911c 9d86235 8fb911c 9d86235 d481bd3 8fb911c d481bd3 8fb911c d481bd3 9d86235 8fb911c d481bd3 8fb911c d481bd3 8fb911c d481bd3 8fb911c 9d86235 1764cf7 263ab21 8fb911c 9d86235 1b48371 bf128ef 263ab21 9d86235 89c50a5 aea28ce 9d86235 aea28ce 9d86235 aea28ce 70472e2 aea28ce 70472e2 8fb911c 70472e2 9d86235 aea28ce 9d86235 aea28ce 9d86235 aea28ce 9d86235 aea28ce 9d86235 aea28ce 89c50a5 d481bd3 89c50a5 9d86235 bf128ef d481bd3 9d86235 70472e2 9d86235 70472e2 9d86235 70472e2 9d86235 89c50a5 9d86235 d481bd3 89c50a5 d481bd3 9d86235 d481bd3 bf128ef d27d543 bf128ef 481db5b d27d543 1688922 d27d543 9d86235 1688922 d27d543 9d86235 1688922 d27d543 9d86235 1688922 d27d543 481db5b d27d543 481db5b d27d543 9d86235 bf128ef d27d543 0470a61 d27d543 263ab21 9d86235 27912a5 9d86235 27912a5 9d86235 70472e2 9d86235 70472e2 9d86235 70472e2 9d86235 8fb911c 9d86235 da65c4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 |
import gradio as gr
import random
import json
import re
import os
import numpy as np
from collections import Counter
from sklearn.feature_extraction.text import TfidfVectorizer
import functools
from concurrent.futures import ThreadPoolExecutor
import threading
import nltk
from nltk.corpus import wordnet
from nltk.stem import WordNetLemmatizer
# Add at the beginning of your script, after imports
import os
import nltk
# Get the current directory
current_dir = os.getcwd()
print(f"Current directory: {current_dir}")
# Point NLTK to the data directories in your current directory
nltk_data_path = os.path.join(current_dir, "nltk_data")
print(f"Setting NLTK data path to: {nltk_data_path}")
# Add the path to NLTK's search paths
nltk.data.path.insert(0, nltk_data_path) # Insert at position 0 to search here first
# Print all paths for debugging
print(f"NLTK will search in: {nltk.data.path}")
# Try to load the taggers from your local directory
try:
# Try to directly load the tagger model
from nltk.tag.perceptron import PerceptronTagger
tagger = PerceptronTagger()
print("Successfully loaded PerceptronTagger")
except Exception as e:
print(f"Error loading tagger: {e}")
# nltk.download('averaged_perceptron_tagger_eng')
# Add the header constant at the top of your file
WEBSITE = ("""<div class="embed_hidden" style="text-align: center;">
<h1>SINC: Spatial Composition of 3D Human Motions for Simultaneous Action Generation</h1>
<h2 style="margin: 1em 0; font-size: 2em;">
<span style="font-weight: normal; font-style: italic;">ICCV 2023</span>
</h2>
<h3>
<a href="https://atnikos.github.io/" target="_blank" rel="noopener noreferrer">Nikos Athanasiou</a><sup>*1</sup>,
<a href="https://mathis.petrovich.fr/" target="_blank" rel="noopener noreferrer">Mathis Petrovich</a><sup>*1,2</sup>,
<br>
<a href="https://ps.is.mpg.de/person/black" target="_blank" rel="noopener noreferrer">Michael J. Black</a><sup>1</sup>,
<a href="https://gulvarol.github.io/" target="_blank" rel="noopener noreferrer">Gül Varol</a><sup>2</sup>
</h3>
<h3>
<sup>1</sup>MPI for Intelligent Systems, Tübingen, Germany<br>
<sup>2</sup>LIGM, École des Ponts, Univ Gustave Eiffel, CNRS, France
</h3>
</div>
<div style="display:flex; gap: 0.3rem; justify-content: center; align-items: center;" align="center">
<a href='https://arxiv.org/abs/2304.10417'><img src='https://img.shields.io/badge/Arxiv-2304.10417-A42C25?style=flat&logo=arXiv&logoColor=A42C25'></a>
<a href='https://sinc.is.tue.mpg.de'><img src='https://img.shields.io/badge/Project-Page-%23df5b46?style=flat&logo=Google%20chrome&logoColor=%23df5b46'></a>
</div>
<h2 align="center">
Download
<a href="https://drive.google.com/drive/folders/1ks9wvNN_arrgBcd0GxN5nRLf5ASPkUgc?usp=sharing" target="_blank" rel="noopener noreferrer"> SINC synthetic data</a>,
if you want to train your models with spatial composition from AMASS.
<br>
The data you are exploring in this demo are
the data created using the
code <a href='https://github.com/atnikos/sinc/blob/main/create_synthetic_babel.py' target="_blank" rel="noopener noreferrer">to compose motions from AMASS in our repo.</a><sup>**</sup>
</h2>
""")
# Action examples
ACTION_EXAMPLES = [
"walk forward on balance beam", "walk counterclockwise", "sit on chair", "kick a ball", "jump up",
"hold on to rail with right hand", "pick up an object", 'wave with the right hand', 'throw a ball', 'bow'
]
ACTION_EXAMPLES_SIMULTANEOUS = [
"walk forward on balance beam while holding rail with right hand",
"walk counterclockwise while waving with left hand",
"sit on chair and wave with left hand",
"pick up an object while bowing",
"walk forward on balance beam while waving left hand"
]
# Global cache for expensive operations
SIMILARITY_CACHE = {}
SEARCH_RESULTS_CACHE = {}
GPT_SIMILARITY_CACHE = {}
GPT_SEARCH_RESULTS_CACHE = {}
SYNONYM_CACHE = {}
MAX_WORKERS = 4 # For ThreadPoolExecutor
# Cache for TF-IDF
TFIDF_VECTORIZER = None
TFIDF_MATRIX = None
MOTION_TEXTS = []
MOTION_KEYS = []
GPT_TEXTS = []
GPT_KEYS = []
# Initialize lemmatizer
lemmatizer = WordNetLemmatizer()
# Movement action word mappings - manually defined synonyms for common motion words
ACTION_SYNONYMS = {
'walk': ['move', 'stroll', 'pace', 'stride', 'wander', 'stalk', 'amble', 'saunter', 'tread', 'step'],
'run': ['sprint', 'jog', 'dash', 'race', 'bolt', 'scamper', 'rush', 'hurry'],
'jump': ['leap', 'hop', 'spring', 'bounce', 'vault', 'bound', 'skip'],
'turn': ['rotate', 'spin', 'twist', 'revolve', 'pivot', 'swivel', 'whirl'],
'wave': ['signal', 'gesture', 'flap', 'flutter', 'waggle', 'shake', 'brandish'],
'sit': ['perch', 'recline', 'rest', 'squat'],
'stand': ['rise', 'upright', 'erect', 'vertical'],
'throw': ['toss', 'hurl', 'fling', 'chuck', 'lob', 'pitch', 'cast'],
'grab': ['grasp', 'clutch', 'seize', 'grip', 'hold', 'take', 'catch'],
'pick': ['lift', 'raise', 'hoist', 'elevate'],
'kick': ['boot', 'punt', 'strike'],
'bow': ['bend', 'stoop', 'incline', 'nod'],
'dance': ['twirl', 'sway', 'shimmy', 'boogie', 'groove', 'swing'],
'balance': ['steady', 'stabilize', 'poise', 'equilibrium'],
'forward': ['ahead', 'onward', 'frontward', 'forth'],
'backward': ['back', 'rearward', 'reverse', 'retreat'],
'clockwise': ['right', 'rightward', 'rightways'],
'counterclockwise': ['left', 'leftward', 'leftways', 'anticlockwise'],
'hold': ['grip', 'grasp', 'clutch', 'clasp', 'clench', 'possess']
}
# Build reverse mapping for faster lookups
REVERSE_SYNONYMS = {}
for word, synonyms in ACTION_SYNONYMS.items():
REVERSE_SYNONYMS[word] = word # A word is its own synonym
for synonym in synonyms:
REVERSE_SYNONYMS[synonym] = word
def get_wordnet_pos(word):
"""Map POS tag to first character used by WordNet lemmatizer
with fallback for errors"""
try:
tag = nltk.tag.pos_tag([word])[0][1][0].upper()
tag_dict = {"J": wordnet.ADJ,
"N": wordnet.NOUN,
"V": wordnet.VERB,
"R": wordnet.ADV}
return tag_dict.get(tag, wordnet.NOUN)
except Exception as e:
print(f"POS tagging error for word '{word}': {e}")
# Default to NOUN as fallback
return wordnet.NOUN
def get_synonyms(word):
"""Get all synonyms for a word using WordNet and our custom action mappings"""
if word in SYNONYM_CACHE:
return SYNONYM_CACHE[word]
synonyms = set()
# Add the word itself
synonyms.add(word)
# Check our custom action mappings first (faster and more domain-specific)
if word in REVERSE_SYNONYMS:
canonical_word = REVERSE_SYNONYMS[word]
synonyms.add(canonical_word)
synonyms.update(ACTION_SYNONYMS.get(canonical_word, []))
# Then check WordNet (more general but can be noisy)
try:
word_lemma = lemmatizer.lemmatize(word, get_wordnet_pos(word))
for syn in wordnet.synsets(word_lemma):
for lemma in syn.lemmas():
synonyms.add(lemma.name().lower().replace('_', ' '))
except Exception as e:
print(f"Error getting WordNet synonyms for '{word}': {e}")
SYNONYM_CACHE[word] = synonyms
return synonyms
def expand_query_with_synonyms(query):
"""Expand a query with synonyms for each term"""
try:
words = nltk.word_tokenize(query.lower())
except Exception as e:
print(f"Tokenization error: {e}")
# Fallback to simple split if tokenization fails
words = query.lower().split()
expanded_terms = []
for word in words:
if len(word) > 2: # Only expand words with length > 2 to avoid stop words
synonyms = get_synonyms(word)
expanded_terms.extend(synonyms)
else:
expanded_terms.append(word)
# Join back into a space-separated string
return ' '.join(expanded_terms)
def create_example_buttons(textbox, loftexts):
"""Creates clickable buttons for example actions"""
return gr.Examples(
examples=loftexts,
inputs=textbox,
label="Example Actions"
)
# Load motion data
def load_json_dict(file_path):
with open(file_path, "r") as f:
return json.load(f)
# Load data at startup
print("Loading motion data...")
motion_dict = load_json_dict("for_website_v4.json")
motion_dict = {
key: value for key, value in motion_dict.items()
if "guide forward walk" not in value['source_annot'].lower()
and "guide forward walk" not in value['target_annot'].lower()
}
print("Loading GPT labels...")
GPT_LABELS_LIST = load_json_dict('gpt3-labels-list.json')
GPT_LABELS_LIST = {k: v[2] for k, v in GPT_LABELS_LIST.items()}
# TF-IDF based similarity implementation with synonym expansion
def initialize_tfidf():
"""Initialize TF-IDF vectorizer and precompute matrices"""
global TFIDF_VECTORIZER, TFIDF_MATRIX, MOTION_TEXTS, MOTION_KEYS
print("Initializing TF-IDF vectorizer...")
# Extract text descriptions from the motion dictionary for TF-IDF
MOTION_TEXTS = []
MOTION_KEYS = []
for key, motion in motion_dict.items():
# Combine source and target annotations
text = f"{motion['source_annot']} {motion['target_annot']}".lower()
MOTION_TEXTS.append(text)
MOTION_KEYS.append(key)
# Initialize the TF-IDF vectorizer
TFIDF_VECTORIZER = TfidfVectorizer(
lowercase=True,
stop_words='english',
ngram_range=(1, 2), # Include bigrams for better matching
max_features=20000, # Increased to accommodate synonym expansions
min_df=1 # Lower threshold to catch less frequent terms
)
# Fit and transform to get TF-IDF vectors
TFIDF_MATRIX = TFIDF_VECTORIZER.fit_transform(MOTION_TEXTS)
print(f"TF-IDF matrix created with shape {TFIDF_MATRIX.shape}")
# Also create GPT labels matrix
initialize_gpt_tfidf()
def initialize_gpt_tfidf():
"""Initialize TF-IDF for GPT labels"""
global GPT_TEXTS, GPT_KEYS
print("Initializing TF-IDF for GPT labels...")
GPT_TEXTS = []
GPT_KEYS = []
for key, text in GPT_LABELS_LIST.items():
GPT_TEXTS.append(text.lower())
GPT_KEYS.append(key)
def compute_tfidf_similarity(query, top_k=10):
"""Compute similarity using TF-IDF vectors with synonym expansion"""
global TFIDF_VECTORIZER, TFIDF_MATRIX, MOTION_TEXTS, MOTION_KEYS
# Original query for cache key
original_query = query.lower().strip()
# Check cache first
cache_key = f"tfidf_{original_query}_{top_k}"
if cache_key in SIMILARITY_CACHE:
return SIMILARITY_CACHE[cache_key]
try:
# Expand query with synonyms
expanded_query = expand_query_with_synonyms(original_query)
# Transform query to TF-IDF space
query_vector = TFIDF_VECTORIZER.transform([expanded_query])
# Compute cosine similarity between query and all texts
# Using matrix multiplication for sparse matrices
similarities = (query_vector @ TFIDF_MATRIX.T).toarray().flatten()
# Get indices of top_k highest similarity scores
top_indices = np.argsort(similarities)[-top_k:][::-1]
# Get the corresponding entries and scores
top_entries = [motion_dict[MOTION_KEYS[idx]] for idx in top_indices]
top_scores = [similarities[idx] for idx in top_indices]
result = (top_entries, top_scores)
except Exception as e:
print(f"Error in TF-IDF similarity computation: {e}")
# Fallback to random motions if TF-IDF fails
result = (get_random_motions(top_k), ['NA']*top_k)
SIMILARITY_CACHE[cache_key] = result
return result
def compute_gpt_tfidf_similarity(query):
"""Compute similarity between query and GPT labels using TF-IDF with synonym expansion"""
global TFIDF_VECTORIZER, GPT_TEXTS, GPT_KEYS
# Original query for cache key
original_query = query.lower().strip()
# Check cache first
cache_key = f"gpt_tfidf_{original_query}"
if cache_key in GPT_SIMILARITY_CACHE:
return GPT_SIMILARITY_CACHE[cache_key]
try:
# Expand query with synonyms
expanded_query = expand_query_with_synonyms(original_query)
# Transform query and all GPT texts to TF-IDF space
query_vector = TFIDF_VECTORIZER.transform([expanded_query])
gpt_vectors = TFIDF_VECTORIZER.transform(GPT_TEXTS)
# Compute cosine similarity between query and all GPT texts
similarities = (query_vector @ gpt_vectors.T).toarray().flatten()
# Get the index of highest similarity score
best_idx = np.argmax(similarities)
best_key = GPT_KEYS[best_idx]
best_text = GPT_LABELS_LIST[best_key]
best_sim = similarities[best_idx]
result = (best_key, best_text, best_sim)
except Exception as e:
print(f"Error in GPT TF-IDF similarity computation: {e}")
# Fallback to first GPT label if computation fails
if GPT_KEYS:
result = (GPT_KEYS[0], GPT_LABELS_LIST[GPT_KEYS[0]], 0.5)
else:
result = (None, None, 0)
GPT_SIMILARITY_CACHE[cache_key] = result
return result
# Precompile regex pattern
WORD_PATTERN = re.compile(r'\b\w+\b')
# Cache the word lists to avoid repeated tokenization
SOURCE_WORDS_CACHE = {}
TARGET_WORDS_CACHE = {}
def get_words(text):
"""Tokenize text and cache the results"""
if text in SOURCE_WORDS_CACHE:
return SOURCE_WORDS_CACHE[text]
words = set(WORD_PATTERN.findall(text.lower()))
SOURCE_WORDS_CACHE[text] = words
return words
def exact_string_search(action1, action2):
"""Search for exact string matches first"""
exact_results = []
action1_lower = action1.lower().strip()
action2_lower = action2.lower().strip()
for k, v in motion_dict.items():
source_lower = v["source_annot"].lower()
target_lower = v["target_annot"].lower()
# Check for exact matches in either annotation
cond1 = action1_lower in source_lower or action1_lower in target_lower
cond2 = action2_lower in source_lower or action2_lower in target_lower
if cond1 and cond2:
exact_results.append(v)
return exact_results
def search_motions_two_actions(action1, action2):
"""Enhanced substring search with synonym expansion"""
# Create a cache key for this query
cache_key = f"{action1.lower().strip()}_{action2.lower().strip()}"
# Check if we already have results for this query
if cache_key in SEARCH_RESULTS_CACHE:
return SEARCH_RESULTS_CACHE[cache_key]
try:
# Convert actions into lists of words
action1_words = set(action1.lower().strip().split())
action2_words = set(action2.lower().strip().split())
# Expand with synonyms
expanded_action1_words = set()
for word in action1_words:
if len(word) > 2: # Only consider words longer than 2 chars
expanded_action1_words.update(get_synonyms(word))
else:
expanded_action1_words.add(word)
expanded_action2_words = set()
for word in action2_words:
if len(word) > 2: # Only consider words longer than 2 chars
expanded_action2_words.update(get_synonyms(word))
else:
expanded_action2_words.add(word)
results = []
for k, v in motion_dict.items():
# Get or compute tokenized words from cache
if v["source_annot"] not in SOURCE_WORDS_CACHE:
SOURCE_WORDS_CACHE[v["source_annot"]] = set(WORD_PATTERN.findall(v["source_annot"].lower()))
if v["target_annot"] not in TARGET_WORDS_CACHE:
TARGET_WORDS_CACHE[v["target_annot"]] = set(WORD_PATTERN.findall(v["target_annot"].lower()))
source_words = SOURCE_WORDS_CACHE[v["source_annot"]]
target_words = TARGET_WORDS_CACHE[v["target_annot"]]
# For each word in action1, check if any of its synonyms match
cond1 = False
if action1_words: # Only check if action1 has words
matches = 0
for word in action1_words:
word_matches = False
if len(word) <= 2: # For short words, just check exact match
if word in source_words or word in target_words:
word_matches = True
else: # For longer words, check all synonyms
for syn in get_synonyms(word):
if syn in source_words or syn in target_words:
word_matches = True
break
if word_matches:
matches += 1
# Consider a match if at least 70% of words (or their synonyms) are found
cond1 = (matches / len(action1_words)) >= 0.7 if action1_words else True
else:
cond1 = True
# For each word in action2, check if any of its synonyms match
cond2 = False
if action2_words: # Only check if action2 has words
matches = 0
for word in action2_words:
word_matches = False
if len(word) <= 2: # For short words, just check exact match
if word in source_words or word in target_words:
word_matches = True
else: # For longer words, check all synonyms
for syn in get_synonyms(word):
if syn in source_words or syn in target_words:
word_matches = True
break
if word_matches:
matches += 1
# Consider a match if at least 70% of words (or their synonyms) are found
cond2 = (matches / len(action2_words)) >= 0.7 if action2_words else True
else:
cond2 = True
if cond1 and cond2:
results.append(v)
except Exception as e:
print(f"Error in substring search: {e}")
results = []
# Cache the results
SEARCH_RESULTS_CACHE[cache_key] = results
return results
def search_motions_semantic(action1, action2, top_k=10):
"""Semantic search using TF-IDF similarity with synonym expansion"""
query_text = (action1.strip() + " " + action2.strip()).strip().lower()
if not query_text:
return [], []
# Check cache first
cache_key = f"{query_text}_{top_k}"
if cache_key in SEARCH_RESULTS_CACHE:
return SEARCH_RESULTS_CACHE[cache_key]
# Use TF-IDF similarity
return compute_tfidf_similarity(query_text, top_k)
def get_random_motions(n_motions):
all_vals = list(motion_dict.values())
return random.sample(all_vals, min(n_motions, len(all_vals)))
def search_gpt_semantic(action, top_k=1):
"""Search GPT labels using TF-IDF similarity with synonym expansion"""
query_text = action.strip().lower()
if not query_text:
return None, None, None
# Check cache first
if query_text in GPT_SEARCH_RESULTS_CACHE:
return GPT_SEARCH_RESULTS_CACHE[query_text]
# Use TF-IDF similarity for GPT labels
result = compute_gpt_tfidf_similarity(query_text)
GPT_SEARCH_RESULTS_CACHE[query_text] = result
return result
def search_motions_combined(action1, action2, n_motions):
"""Improved combined search approach that prioritizes exact matches"""
# Create a cache key for this query
cache_key = f"{action1.lower().strip()}_{action2.lower().strip()}_{n_motions}"
# Check if we already have results for this query
if cache_key in SEARCH_RESULTS_CACHE:
return SEARCH_RESULTS_CACHE[cache_key]
# 1. First try exact string matches
exact_results = exact_string_search(action1, action2)
if len(exact_results) >= n_motions:
# If we have enough exact matches, return them
result = (random.sample(exact_results, n_motions), ['EXACT']*n_motions)
SEARCH_RESULTS_CACHE[cache_key] = result
return result
# 2. If not enough exact matches, try the enhanced substring search with synonyms
string_results = search_motions_two_actions(action1, action2)
# Filter out any results that are already in exact_results
string_results = [r for r in string_results if r not in exact_results]
# Combine exact_results with string_results
combined_results = list(exact_results)
combined_scores = ['EXACT'] * len(exact_results)
if len(combined_results) + len(string_results) >= n_motions:
# If we have enough combined results, use them
needed = n_motions - len(combined_results)
if needed > 0:
combined_results.extend(random.sample(string_results, needed))
combined_scores.extend(['SUBSTR'] * needed)
result = (combined_results[:n_motions], combined_scores[:n_motions])
else:
# 3. If still not enough, add all substring matches and then use semantic search
combined_results.extend(string_results)
combined_scores.extend(['SUBSTR'] * len(string_results))
# Use semantic search for the remaining needed motions
needed = n_motions - len(combined_results)
if needed > 0:
sem_list, sem_score_list = search_motions_semantic(action1, action2, top_k=2*needed)
# Filter out duplicates
used_combo = {m["motion_combo"] for m in combined_results}
for item, score in zip(sem_list, sem_score_list):
if item["motion_combo"] not in used_combo:
combined_results.append(item)
combined_scores.append(score)
used_combo.add(item["motion_combo"])
if len(combined_results) == n_motions:
break
# Still short? Fill with random
if len(combined_results) < n_motions:
needed2 = n_motions - len(combined_results)
rnd = get_random_motions(needed2)
for r in rnd:
if r["motion_combo"] not in used_combo:
combined_results.append(r)
combined_scores.append('RANDOM')
used_combo.add(r["motion_combo"])
if len(combined_results) == n_motions:
break
result = (combined_results[:n_motions], combined_scores[:n_motions])
# Cache the results
SEARCH_RESULTS_CACHE[cache_key] = result
return result
def safe_video_update(motion_data, semantic_score, visible=True):
"""Optimized video update with match type display"""
# Prepare the annotation text based on the match type
if semantic_score == 'EXACT':
match_info = "Exact Match"
elif semantic_score == 'SUBSTR':
match_info = "Substring Match"
elif semantic_score == 'RANDOM':
match_info = "Random Result"
else:
# For semantic matches, round to 2 decimal places
ssim = str(round(semantic_score, 2)) if semantic_score != 'NA' else ''
match_info = f"Semantic Match (sim: {ssim})"
actual_annot = f"{motion_data['annotation']} | {match_info}"
return [
gr.update(value=url, visible=visible)
for url in (motion_data["motion_combo"],
motion_data["motion_a"],
motion_data["motion_b"])
] + [gr.update(value=actual_annot, visible=visible)]
def update_videos(motions, n_visible, semantic_scores):
"""Update video components with motion data, with parallel video processing"""
updates = []
if not motions:
updates.append(gr.update(value='incompatible combination', visible=True))
remaining = 7
for _ in range(remaining):
updates.extend([
gr.update(value=None, visible=False),
gr.update(value=None, visible=False),
gr.update(value=None, visible=False),
gr.update(value=None, visible=False)
])
else:
try:
# Prepare all updates in parallel using ThreadPoolExecutor
with ThreadPoolExecutor(max_workers=min(8, n_visible)) as executor:
# Submit all video update tasks
future_updates = [
executor.submit(safe_video_update, motion, semantic_scores[jj], True)
for jj, motion in enumerate(motions[:n_visible])
]
# Collect all updates as they complete
for future in future_updates:
updates.extend(future.result())
remaining = 8 - len(motions[:n_visible])
for _ in range(remaining):
updates.extend([
gr.update(value=None, visible=False),
gr.update(value=None, visible=False),
gr.update(value=None, visible=False),
gr.update(value=None, visible=False)
])
except Exception as e:
print(f"Error updating videos: {e}")
# Fallback if parallel processing fails
updates = []
for i in range(8):
if i < len(motions[:n_visible]):
motion = motions[i]
score = semantic_scores[i]
# Handle different score types
if score == 'EXACT':
match_info = "Exact Match"
elif score == 'SUBSTR':
match_info = "Substring Match"
elif score == 'RANDOM':
match_info = "Random Result"
else:
# For semantic matches, round to 2 decimal places
ssim = str(round(score, 2)) if score != 'NA' else ''
match_info = f"Semantic Match (sim: {ssim})"
actual_annot = f"{motion['annotation']} | {match_info}"
updates.extend([
gr.update(value=motion["motion_combo"], visible=True),
gr.update(value=motion["motion_a"], visible=True),
gr.update(value=motion["motion_b"], visible=True),
gr.update(value=actual_annot, visible=True)
])
else:
updates.extend([
gr.update(value=None, visible=False),
gr.update(value=None, visible=False),
gr.update(value=None, visible=False),
gr.update(value=None, visible=False)
])
return updates
def parse_gpt_labels(text):
"""Parse GPT labels from text"""
if text.startswith("Answer: "):
text = text[len("Answer: "):] # Remove the "Answer: " prefix
return text.split("\n") # Split by newline
def failure_update(message, n_motions=None):
"""Create UI updates for failure cases"""
updates = []
# For the first motion: hide videos and display the message in the text box
updates.append(gr.update(value=None, visible=False)) # video_combo for motion 1
updates.append(gr.update(value=None, visible=False)) # video_a for motion 1
updates.append(gr.update(value=None, visible=False)) # video_b for motion 1
updates.append(gr.update(value=message, visible=True)) # annotation text for motion 1
# For the remaining 7 motions, hide all components
for _ in range(7):
updates.extend([
gr.update(value=None, visible=False),
gr.update(value=None, visible=False),
gr.update(value=None, visible=False),
gr.update(value=None, visible=False)
])
return updates
def handle_interaction(action1, action2, n_motions):
"""Handle user interaction with caching for faster responses"""
# Create a cache key for the entire interaction
cache_key = f"interaction_{action1.strip().lower()}_{action2.strip().lower()}_{n_motions}"
# Check if we have cached results for this interaction
if cache_key in SEARCH_RESULTS_CACHE:
return SEARCH_RESULTS_CACHE[cache_key]
try:
if not action1.strip() and not action2.strip():
# Both empty => random
motions = get_random_motions(n_motions)
result = update_videos(motions, n_motions, ['NA'] * len(motions))
else:
# Process GPT labels in parallel
with ThreadPoolExecutor(max_workers=2) as executor:
# Submit tasks for processing both actions in parallel
if action1 in GPT_LABELS_LIST:
future_act1 = executor.submit(lambda: parse_gpt_labels(GPT_LABELS_LIST[action1]))
else:
future_act1 = executor.submit(search_gpt_semantic, action1, 1)
if action2 in GPT_LABELS_LIST:
future_act2 = executor.submit(lambda: parse_gpt_labels(GPT_LABELS_LIST[action2]))
else:
future_act2 = executor.submit(search_gpt_semantic, action2, 1)
# Get results
try:
if action1 in GPT_LABELS_LIST:
gpt_act1 = future_act1.result()
else:
best_key, best_text, best_sim = future_act1.result()
if not best_text:
result = failure_update("Action 1 not recognized.")
SEARCH_RESULTS_CACHE[cache_key] = result
return result
gpt_act1 = parse_gpt_labels(best_text)
if action2 in GPT_LABELS_LIST:
gpt_act2 = future_act2.result()
else:
best_key, best_text, best_sim = future_act2.result()
if not best_text:
result = failure_update("Action 2 not recognized.")
SEARCH_RESULTS_CACHE[cache_key] = result
return result
gpt_act2 = parse_gpt_labels(best_text)
except Exception as e:
print(f"Error processing GPT labels: {e}")
result = failure_update("Error processing actions. Please try again.")
SEARCH_RESULTS_CACHE[cache_key] = result
return result
# Check for conflicts
if bool(set(gpt_act1) & set(gpt_act2)):
failure_message = "Incompatible action pair. Please select actions that are not conflicting."
result = failure_update(failure_message)
else:
motions, sem_mot_scores = search_motions_combined(action1, action2, n_motions)
result = update_videos(motions, n_motions, sem_mot_scores)
except Exception as e:
print(f"Error in handle_interaction: {e}")
result = failure_update("An error occurred. Please try again.")
# Cache the result
SEARCH_RESULTS_CACHE[cache_key] = result
return result
# Custom CSS
CUSTOM_CSS = """
button.compact-button {
width: auto !important; /* Let the button shrink to fit text */
min-width: unset !important; /* Remove any forced min-width */
padding: 4px 8px !important;
font-size: 20px !important;
line-height: 1 !important;
}
"""
# Build the Gradio UI
with gr.Blocks(css=CUSTOM_CSS) as demo:
gr.HTML(WEBSITE)
with gr.Tabs():
with gr.Tab("SINC-Synth exploration"):
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
action1_textbox = gr.Textbox(
label="Action 1",
placeholder="Select an action or type the first action, e.g. 'walk'",
)
create_example_buttons(action1_textbox, ACTION_EXAMPLES[:5])
with gr.Column():
action2_textbox = gr.Textbox(
label="Action 2",
placeholder="Select an action or type the second action, e.g. 'wave'"
)
create_example_buttons(action2_textbox, ACTION_EXAMPLES[5:])
with gr.Column():
n_motions_radio = gr.Radio(
choices=[2, 4, 6, 8],
label="Number of motions to be shown from the SINC-Synthetic data",
value=2,
show_label=True,
container=True,
)
with gr.Row():
search_button = gr.Button("Search",
elem_classes=["compact-button"])
random_button = gr.Button("Random",
elem_classes=["compact-button"])
# up to 8 motions
motion_components = []
videos_per_row = 2
max_motions = 8
num_rows = (max_motions + videos_per_row - 1) // videos_per_row # Ceiling division
for i in range(num_rows):
with gr.Row():
for j in range(videos_per_row):
motion_index = i * videos_per_row + j
if motion_index >= max_motions:
break
with gr.Column():
video_combo = gr.Video(
label=f"Motion {motion_index + 1}",
visible=False,
width=640,
height=512
)
with gr.Row():
video_a = gr.Video(
label="Motion A",
visible=False,
width=320,
height=256
)
video_b = gr.Video(
label="Motion B",
visible=False,
width=320,
height=256
)
text = gr.Textbox(
visible=False,
interactive=False
)
motion_components.extend([video_combo, video_a, video_b, text])
search_button.click(
fn=handle_interaction,
inputs=[action1_textbox, action2_textbox, n_motions_radio],
outputs=motion_components
)
random_button.click(
fn=lambda n: handle_interaction("", "", n),
inputs=[n_motions_radio],
outputs=motion_components
)
gr.HTML(("""
<div style='text-align: center; margin-top: 20px; font-size: 16px;'>
<p><sup>**</sup>Our data in the official paper are using on the fly compositions,
which means than are not computed and filtered offline. This is a minimally
processed version of ~124k motions ranging between 3-7 seconds.</p>
<p>Made with ❤️ by Nikos Athanasiou</p>
</div>
""")
)
with gr.Tab("Simultaneous Motion Generation with SINC model"):
gr.HTML("<h2>Motion Generation from Text [TBD. Currenly under construction.]</h2>")
with gr.Row():
text_input_gen = gr.Textbox(
label="Motion Description",
placeholder="Describe the motion, e.g. 'A person walking forward while waving'"
)
create_example_buttons(text_input_gen, ACTION_EXAMPLES_SIMULTANEOUS)
generate_button = gr.Button("Generate Motion",
elem_classes=["compact-button"])
with gr.Row():
output_video = gr.Video(
label="Generated Motion",
visible=True,
width=320,
height=180
)
def generate_motion(text):
# Placeholder function - replace with actual model inference
# Return None instead of a string path to avoid schema conversion issues
return None
generate_button.click(
fn=generate_motion,
inputs=[text_input_gen],
outputs=[output_video]
)
# Initialize TF-IDF at startup
initialize_tfidf()
# Precompute synonyms for common action words
print("Precomputing synonyms for common action words...")
for action in ACTION_SYNONYMS:
get_synonyms(action)
# Video prefetching
def prefetch_videos():
"""Prefetch some common videos to warm up the cache"""
print("Prefetching common videos...")
try:
# Get a small set of common videos to prefetch
random_motions = get_random_motions(4)
common_actions = [("walk", "wave"), ("sit", "bow"), ("jump", "throw")]
with ThreadPoolExecutor(max_workers=8) as executor:
futures = []
# Add random motions to prefetch list
for motion in random_motions:
futures.append(executor.submit(
lambda m: (m["motion_combo"], m["motion_a"], m["motion_b"]),
motion
))
# Add common action combinations
for act1, act2 in common_actions:
motions, _ = search_motions_combined(act1, act2, 2)
if motions:
for motion in motions:
futures.append(executor.submit(
lambda m: (m["motion_combo"], m["motion_a"], m["motion_b"]),
motion
))
# Wait for all prefetch operations to complete
for future in futures:
future.result()
print("Video prefetching complete")
except Exception as e:
print(f"Error in video prefetching: {e}")
# Start prefetching in a separate thread to not block startup
threading.Thread(target=prefetch_videos).start()
# Print ready message
print("Demo ready! Optimized code running with exact matching prioritized over synonym-enhanced TF-IDF similarity.")
# Launch the demo
demo.launch(server_name="0.0.0.0", server_port=7860, share=False) |