File size: 19,529 Bytes
7f436a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
# Copyright (c) Facebook, Inc. and its affiliates.
import math
from typing import List, Tuple
import torch

from detectron2.layers.rotated_boxes import pairwise_iou_rotated

from .boxes import Boxes


class RotatedBoxes(Boxes):
    """

    This structure stores a list of rotated boxes as a Nx5 torch.Tensor.

    It supports some common methods about boxes

    (`area`, `clip`, `nonempty`, etc),

    and also behaves like a Tensor

    (support indexing, `to(device)`, `.device`, and iteration over all boxes)

    """

    def __init__(self, tensor: torch.Tensor):
        """

        Args:

            tensor (Tensor[float]): a Nx5 matrix.  Each row is

                (x_center, y_center, width, height, angle),

                in which angle is represented in degrees.

                While there's no strict range restriction for it,

                the recommended principal range is between [-180, 180) degrees.



        Assume we have a horizontal box B = (x_center, y_center, width, height),

        where width is along the x-axis and height is along the y-axis.

        The rotated box B_rot (x_center, y_center, width, height, angle)

        can be seen as:



        1. When angle == 0:

           B_rot == B

        2. When angle > 0:

           B_rot is obtained by rotating B w.r.t its center by :math:`|angle|` degrees CCW;

        3. When angle < 0:

           B_rot is obtained by rotating B w.r.t its center by :math:`|angle|` degrees CW.



        Mathematically, since the right-handed coordinate system for image space

        is (y, x), where y is top->down and x is left->right, the 4 vertices of the

        rotated rectangle :math:`(yr_i, xr_i)` (i = 1, 2, 3, 4) can be obtained from

        the vertices of the horizontal rectangle :math:`(y_i, x_i)` (i = 1, 2, 3, 4)

        in the following way (:math:`\\theta = angle*\\pi/180` is the angle in radians,

        :math:`(y_c, x_c)` is the center of the rectangle):



        .. math::



            yr_i = \\cos(\\theta) (y_i - y_c) - \\sin(\\theta) (x_i - x_c) + y_c,



            xr_i = \\sin(\\theta) (y_i - y_c) + \\cos(\\theta) (x_i - x_c) + x_c,



        which is the standard rigid-body rotation transformation.



        Intuitively, the angle is

        (1) the rotation angle from y-axis in image space

        to the height vector (top->down in the box's local coordinate system)

        of the box in CCW, and

        (2) the rotation angle from x-axis in image space

        to the width vector (left->right in the box's local coordinate system)

        of the box in CCW.



        More intuitively, consider the following horizontal box ABCD represented

        in (x1, y1, x2, y2): (3, 2, 7, 4),

        covering the [3, 7] x [2, 4] region of the continuous coordinate system

        which looks like this:



        .. code:: none



            O--------> x

            |

            |  A---B

            |  |   |

            |  D---C

            |

            v y



        Note that each capital letter represents one 0-dimensional geometric point

        instead of a 'square pixel' here.



        In the example above, using (x, y) to represent a point we have:



        .. math::



            O = (0, 0), A = (3, 2), B = (7, 2), C = (7, 4), D = (3, 4)



        We name vector AB = vector DC as the width vector in box's local coordinate system, and

        vector AD = vector BC as the height vector in box's local coordinate system. Initially,

        when angle = 0 degree, they're aligned with the positive directions of x-axis and y-axis

        in the image space, respectively.



        For better illustration, we denote the center of the box as E,



        .. code:: none



            O--------> x

            |

            |  A---B

            |  | E |

            |  D---C

            |

            v y



        where the center E = ((3+7)/2, (2+4)/2) = (5, 3).



        Also,



        .. math::



            width = |AB| = |CD| = 7 - 3 = 4,

            height = |AD| = |BC| = 4 - 2 = 2.



        Therefore, the corresponding representation for the same shape in rotated box in

        (x_center, y_center, width, height, angle) format is:



        (5, 3, 4, 2, 0),



        Now, let's consider (5, 3, 4, 2, 90), which is rotated by 90 degrees

        CCW (counter-clockwise) by definition. It looks like this:



        .. code:: none



            O--------> x

            |   B-C

            |   | |

            |   |E|

            |   | |

            |   A-D

            v y



        The center E is still located at the same point (5, 3), while the vertices

        ABCD are rotated by 90 degrees CCW with regard to E:

        A = (4, 5), B = (4, 1), C = (6, 1), D = (6, 5)



        Here, 90 degrees can be seen as the CCW angle to rotate from y-axis to

        vector AD or vector BC (the top->down height vector in box's local coordinate system),

        or the CCW angle to rotate from x-axis to vector AB or vector DC (the left->right

        width vector in box's local coordinate system).



        .. math::



            width = |AB| = |CD| = 5 - 1 = 4,

            height = |AD| = |BC| = 6 - 4 = 2.



        Next, how about (5, 3, 4, 2, -90), which is rotated by 90 degrees CW (clockwise)

        by definition? It looks like this:



        .. code:: none



            O--------> x

            |   D-A

            |   | |

            |   |E|

            |   | |

            |   C-B

            v y



        The center E is still located at the same point (5, 3), while the vertices

        ABCD are rotated by 90 degrees CW with regard to E:

        A = (6, 1), B = (6, 5), C = (4, 5), D = (4, 1)



        .. math::



            width = |AB| = |CD| = 5 - 1 = 4,

            height = |AD| = |BC| = 6 - 4 = 2.



        This covers exactly the same region as (5, 3, 4, 2, 90) does, and their IoU

        will be 1. However, these two will generate different RoI Pooling results and

        should not be treated as an identical box.



        On the other hand, it's easy to see that (X, Y, W, H, A) is identical to

        (X, Y, W, H, A+360N), for any integer N. For example (5, 3, 4, 2, 270) would be

        identical to (5, 3, 4, 2, -90), because rotating the shape 270 degrees CCW is

        equivalent to rotating the same shape 90 degrees CW.



        We could rotate further to get (5, 3, 4, 2, 180), or (5, 3, 4, 2, -180):



        .. code:: none



            O--------> x

            |

            |  C---D

            |  | E |

            |  B---A

            |

            v y



        .. math::



            A = (7, 4), B = (3, 4), C = (3, 2), D = (7, 2),



            width = |AB| = |CD| = 7 - 3 = 4,

            height = |AD| = |BC| = 4 - 2 = 2.



        Finally, this is a very inaccurate (heavily quantized) illustration of

        how (5, 3, 4, 2, 60) looks like in case anyone wonders:



        .. code:: none



            O--------> x

            |     B\

            |    /  C

            |   /E /

            |  A  /

            |   `D

            v y



        It's still a rectangle with center of (5, 3), width of 4 and height of 2,

        but its angle (and thus orientation) is somewhere between

        (5, 3, 4, 2, 0) and (5, 3, 4, 2, 90).

        """
        device = tensor.device if isinstance(tensor, torch.Tensor) else torch.device("cpu")
        tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device)
        if tensor.numel() == 0:
            # Use reshape, so we don't end up creating a new tensor that does not depend on
            # the inputs (and consequently confuses jit)
            tensor = tensor.reshape((0, 5)).to(dtype=torch.float32, device=device)
        assert tensor.dim() == 2 and tensor.size(-1) == 5, tensor.size()

        self.tensor = tensor

    def clone(self) -> "RotatedBoxes":
        """

        Clone the RotatedBoxes.



        Returns:

            RotatedBoxes

        """
        return RotatedBoxes(self.tensor.clone())

    def to(self, device: torch.device):
        # Boxes are assumed float32 and does not support to(dtype)
        return RotatedBoxes(self.tensor.to(device=device))

    def area(self) -> torch.Tensor:
        """

        Computes the area of all the boxes.



        Returns:

            torch.Tensor: a vector with areas of each box.

        """
        box = self.tensor
        area = box[:, 2] * box[:, 3]
        return area

    # Avoid in-place operations so that we can torchscript; NOTE: this creates a new tensor
    def normalize_angles(self) -> None:
        """

        Restrict angles to the range of [-180, 180) degrees

        """
        angle_tensor = (self.tensor[:, 4] + 180.0) % 360.0 - 180.0
        self.tensor = torch.cat((self.tensor[:, :4], angle_tensor[:, None]), dim=1)

    def clip(self, box_size: Tuple[int, int], clip_angle_threshold: float = 1.0) -> None:
        """

        Clip (in place) the boxes by limiting x coordinates to the range [0, width]

        and y coordinates to the range [0, height].



        For RRPN:

        Only clip boxes that are almost horizontal with a tolerance of

        clip_angle_threshold to maintain backward compatibility.



        Rotated boxes beyond this threshold are not clipped for two reasons:



        1. There are potentially multiple ways to clip a rotated box to make it

           fit within the image.

        2. It's tricky to make the entire rectangular box fit within the image

           and still be able to not leave out pixels of interest.



        Therefore we rely on ops like RoIAlignRotated to safely handle this.



        Args:

            box_size (height, width): The clipping box's size.

            clip_angle_threshold:

                Iff. abs(normalized(angle)) <= clip_angle_threshold (in degrees),

                we do the clipping as horizontal boxes.

        """
        h, w = box_size

        # normalize angles to be within (-180, 180] degrees
        self.normalize_angles()

        idx = torch.where(torch.abs(self.tensor[:, 4]) <= clip_angle_threshold)[0]

        # convert to (x1, y1, x2, y2)
        x1 = self.tensor[idx, 0] - self.tensor[idx, 2] / 2.0
        y1 = self.tensor[idx, 1] - self.tensor[idx, 3] / 2.0
        x2 = self.tensor[idx, 0] + self.tensor[idx, 2] / 2.0
        y2 = self.tensor[idx, 1] + self.tensor[idx, 3] / 2.0

        # clip
        x1.clamp_(min=0, max=w)
        y1.clamp_(min=0, max=h)
        x2.clamp_(min=0, max=w)
        y2.clamp_(min=0, max=h)

        # convert back to (xc, yc, w, h)
        self.tensor[idx, 0] = (x1 + x2) / 2.0
        self.tensor[idx, 1] = (y1 + y2) / 2.0
        # make sure widths and heights do not increase due to numerical errors
        self.tensor[idx, 2] = torch.min(self.tensor[idx, 2], x2 - x1)
        self.tensor[idx, 3] = torch.min(self.tensor[idx, 3], y2 - y1)

    def nonempty(self, threshold: float = 0.0) -> torch.Tensor:
        """

        Find boxes that are non-empty.

        A box is considered empty, if either of its side is no larger than threshold.



        Returns:

            Tensor: a binary vector which represents

            whether each box is empty (False) or non-empty (True).

        """
        box = self.tensor
        widths = box[:, 2]
        heights = box[:, 3]
        keep = (widths > threshold) & (heights > threshold)
        return keep

    def __getitem__(self, item) -> "RotatedBoxes":
        """

        Returns:

            RotatedBoxes: Create a new :class:`RotatedBoxes` by indexing.



        The following usage are allowed:



        1. `new_boxes = boxes[3]`: return a `RotatedBoxes` which contains only one box.

        2. `new_boxes = boxes[2:10]`: return a slice of boxes.

        3. `new_boxes = boxes[vector]`, where vector is a torch.ByteTensor

           with `length = len(boxes)`. Nonzero elements in the vector will be selected.



        Note that the returned RotatedBoxes might share storage with this RotatedBoxes,

        subject to Pytorch's indexing semantics.

        """
        if isinstance(item, int):
            return RotatedBoxes(self.tensor[item].view(1, -1))
        b = self.tensor[item]
        assert b.dim() == 2, "Indexing on RotatedBoxes with {} failed to return a matrix!".format(
            item
        )
        return RotatedBoxes(b)

    def __len__(self) -> int:
        return self.tensor.shape[0]

    def __repr__(self) -> str:
        return "RotatedBoxes(" + str(self.tensor) + ")"

    def inside_box(self, box_size: Tuple[int, int], boundary_threshold: int = 0) -> torch.Tensor:
        """

        Args:

            box_size (height, width): Size of the reference box covering

                [0, width] x [0, height]

            boundary_threshold (int): Boxes that extend beyond the reference box

                boundary by more than boundary_threshold are considered "outside".



        For RRPN, it might not be necessary to call this function since it's common

        for rotated box to extend to outside of the image boundaries

        (the clip function only clips the near-horizontal boxes)



        Returns:

            a binary vector, indicating whether each box is inside the reference box.

        """
        height, width = box_size

        cnt_x = self.tensor[..., 0]
        cnt_y = self.tensor[..., 1]
        half_w = self.tensor[..., 2] / 2.0
        half_h = self.tensor[..., 3] / 2.0
        a = self.tensor[..., 4]
        c = torch.abs(torch.cos(a * math.pi / 180.0))
        s = torch.abs(torch.sin(a * math.pi / 180.0))
        # This basically computes the horizontal bounding rectangle of the rotated box
        max_rect_dx = c * half_w + s * half_h
        max_rect_dy = c * half_h + s * half_w

        inds_inside = (
            (cnt_x - max_rect_dx >= -boundary_threshold)
            & (cnt_y - max_rect_dy >= -boundary_threshold)
            & (cnt_x + max_rect_dx < width + boundary_threshold)
            & (cnt_y + max_rect_dy < height + boundary_threshold)
        )

        return inds_inside

    def get_centers(self) -> torch.Tensor:
        """

        Returns:

            The box centers in a Nx2 array of (x, y).

        """
        return self.tensor[:, :2]

    def scale(self, scale_x: float, scale_y: float) -> None:
        """

        Scale the rotated box with horizontal and vertical scaling factors

        Note: when scale_factor_x != scale_factor_y,

        the rotated box does not preserve the rectangular shape when the angle

        is not a multiple of 90 degrees under resize transformation.

        Instead, the shape is a parallelogram (that has skew)

        Here we make an approximation by fitting a rotated rectangle to the parallelogram.

        """
        self.tensor[:, 0] *= scale_x
        self.tensor[:, 1] *= scale_y
        theta = self.tensor[:, 4] * math.pi / 180.0
        c = torch.cos(theta)
        s = torch.sin(theta)

        # In image space, y is top->down and x is left->right
        # Consider the local coordintate system for the rotated box,
        # where the box center is located at (0, 0), and the four vertices ABCD are
        # A(-w / 2, -h / 2), B(w / 2, -h / 2), C(w / 2, h / 2), D(-w / 2, h / 2)
        # the midpoint of the left edge AD of the rotated box E is:
        # E = (A+D)/2 = (-w / 2, 0)
        # the midpoint of the top edge AB of the rotated box F is:
        # F(0, -h / 2)
        # To get the old coordinates in the global system, apply the rotation transformation
        # (Note: the right-handed coordinate system for image space is yOx):
        # (old_x, old_y) = (s * y + c * x, c * y - s * x)
        # E(old) = (s * 0 + c * (-w/2), c * 0 - s * (-w/2)) = (-c * w / 2, s * w / 2)
        # F(old) = (s * (-h / 2) + c * 0, c * (-h / 2) - s * 0) = (-s * h / 2, -c * h / 2)
        # After applying the scaling factor (sfx, sfy):
        # E(new) = (-sfx * c * w / 2, sfy * s * w / 2)
        # F(new) = (-sfx * s * h / 2, -sfy * c * h / 2)
        # The new width after scaling tranformation becomes:

        # w(new) = |E(new) - O| * 2
        #        = sqrt[(sfx * c * w / 2)^2 + (sfy * s * w / 2)^2] * 2
        #        = sqrt[(sfx * c)^2 + (sfy * s)^2] * w
        # i.e., scale_factor_w = sqrt[(sfx * c)^2 + (sfy * s)^2]
        #
        # For example,
        # when angle = 0 or 180, |c| = 1, s = 0, scale_factor_w == scale_factor_x;
        # when |angle| = 90, c = 0, |s| = 1, scale_factor_w == scale_factor_y
        self.tensor[:, 2] *= torch.sqrt((scale_x * c) ** 2 + (scale_y * s) ** 2)

        # h(new) = |F(new) - O| * 2
        #        = sqrt[(sfx * s * h / 2)^2 + (sfy * c * h / 2)^2] * 2
        #        = sqrt[(sfx * s)^2 + (sfy * c)^2] * h
        # i.e., scale_factor_h = sqrt[(sfx * s)^2 + (sfy * c)^2]
        #
        # For example,
        # when angle = 0 or 180, |c| = 1, s = 0, scale_factor_h == scale_factor_y;
        # when |angle| = 90, c = 0, |s| = 1, scale_factor_h == scale_factor_x
        self.tensor[:, 3] *= torch.sqrt((scale_x * s) ** 2 + (scale_y * c) ** 2)

        # The angle is the rotation angle from y-axis in image space to the height
        # vector (top->down in the box's local coordinate system) of the box in CCW.
        #
        # angle(new) = angle_yOx(O - F(new))
        #            = angle_yOx( (sfx * s * h / 2, sfy * c * h / 2) )
        #            = atan2(sfx * s * h / 2, sfy * c * h / 2)
        #            = atan2(sfx * s, sfy * c)
        #
        # For example,
        # when sfx == sfy, angle(new) == atan2(s, c) == angle(old)
        self.tensor[:, 4] = torch.atan2(scale_x * s, scale_y * c) * 180 / math.pi

    @classmethod
    def cat(cls, boxes_list: List["RotatedBoxes"]) -> "RotatedBoxes":
        """

        Concatenates a list of RotatedBoxes into a single RotatedBoxes



        Arguments:

            boxes_list (list[RotatedBoxes])



        Returns:

            RotatedBoxes: the concatenated RotatedBoxes

        """
        assert isinstance(boxes_list, (list, tuple))
        if len(boxes_list) == 0:
            return cls(torch.empty(0))
        assert all([isinstance(box, RotatedBoxes) for box in boxes_list])

        # use torch.cat (v.s. layers.cat) so the returned boxes never share storage with input
        cat_boxes = cls(torch.cat([b.tensor for b in boxes_list], dim=0))
        return cat_boxes

    @property
    def device(self) -> torch.device:
        return self.tensor.device

    @torch.jit.unused
    def __iter__(self):
        """

        Yield a box as a Tensor of shape (5,) at a time.

        """
        yield from self.tensor


def pairwise_iou(boxes1: RotatedBoxes, boxes2: RotatedBoxes) -> None:
    """

    Given two lists of rotated boxes of size N and M,

    compute the IoU (intersection over union)

    between **all** N x M pairs of boxes.

    The box order must be (x_center, y_center, width, height, angle).



    Args:

        boxes1, boxes2 (RotatedBoxes):

            two `RotatedBoxes`. Contains N & M rotated boxes, respectively.



    Returns:

        Tensor: IoU, sized [N,M].

    """

    return pairwise_iou_rotated(boxes1.tensor, boxes2.tensor)