File size: 9,184 Bytes
4853fdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import logging
import math
from typing import Callable
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn

logger = logging.Logger(__file__)


def remove_key_prefix_factory(prefix: str = "module."):
    def func(
        model_dict: dict[str, torch.Tensor], state_dict: dict[str,
                                                              torch.Tensor]
    ) -> dict[str, torch.Tensor]:

        state_dict = {
            key[len(prefix):]: value
            for key, value in state_dict.items() if key.startswith(prefix)
        }
        return state_dict

    return func


def merge_matched_keys(
    model_dict: dict[str, torch.Tensor], state_dict: dict[str, torch.Tensor]
) -> dict[str, torch.Tensor]:
    """
    Args:
    model_dict:
        The state dict of the current model, which is going to load pretrained parameters
    state_dict:
        A dictionary of parameters from a pre-trained model.

    Returns:
        dict[str, torch.Tensor]:
            The updated state dict, where parameters with matched keys and shape are 
            updated with values in `state_dict`.
    """
    pretrained_dict = {}
    mismatch_keys = []
    for key, value in state_dict.items():
        if key in model_dict and model_dict[key].shape == value.shape:
            pretrained_dict[key] = value
        else:
            mismatch_keys.append(key)
    logger.info(
        f"Loading pre-trained model, with mismatched keys {mismatch_keys}"
    )
    model_dict.update(pretrained_dict)
    return model_dict


def load_pretrained_model(
    model: nn.Module,
    ckpt_or_state_dict: str | Path | dict[str, torch.Tensor],
    state_dict_process_fn: Callable = merge_matched_keys
) -> None:
    state_dict = ckpt_or_state_dict
    if not isinstance(state_dict, dict):
        state_dict = torch.load(ckpt_or_state_dict, "cpu")

    model_dict = model.state_dict()
    state_dict = state_dict_process_fn(model_dict, state_dict)
    model.load_state_dict(state_dict)


def create_mask_from_length(
    lengths: torch.Tensor, max_length: int | None = None
):
    if max_length is None:
        max_length = max(lengths)
    idxs = torch.arange(max_length).reshape(1, -1)  # (1, max_length)
    mask = idxs.to(lengths.device) < lengths.view(-1, 1)
    # (1, max_length) < (batch_size, 1) -> (batch_size, max_length)
    return mask


def loss_with_mask(
    loss: torch.Tensor,
    mask: torch.Tensor,
    reduce: bool = True
) -> torch.Tensor:
    """
    Apply a mask to the loss tensor and optionally reduce it.

    Args:
        loss: Tensor of shape (b, t, ...) representing the loss values.
        mask: Tensor of shape (b, t) where 1 indicates valid positions and 0 indicates masked positions.
        reduce: If True, return a single scalar value; otherwise, return a tensor of shape (b,).

    Returns:
        torch.Tensor: A scalar if reduce is True, otherwise a tensor of shape (b,).
    """
    expanded_mask = mask[(..., ) + (None, ) * (loss.ndim - mask.ndim)]
    expanded_mask = expanded_mask.expand_as(loss)
    masked_loss = loss * expanded_mask

    sum_dims = tuple(range(1, loss.ndim))
    loss_sum = masked_loss.sum(dim=sum_dims)
    mask_sum = expanded_mask.sum(dim=sum_dims)
    loss = loss_sum / mask_sum

    if reduce:
        return loss.mean()
    else:
        return loss


def convert_pad_shape(pad_shape: list[list[int]]):
    l = pad_shape[::-1]
    pad_shape = [item for sublist in l for item in sublist]
    return pad_shape


def create_alignment_path(duration: torch.Tensor, mask: torch.Tensor):
    device = duration.device

    b, t_x, t_y = mask.shape
    cum_duration = torch.cumsum(duration, 1)

    cum_duration_flat = cum_duration.view(b * t_x)
    path = create_mask_from_length(cum_duration_flat, t_y).float()
    path = path.view(b, t_x, t_y)
    # take the diff on the `t_x` axis
    path = path - torch.nn.functional.pad(
        path, convert_pad_shape([[0, 0], [1, 0], [0, 0]])
    )[:, :-1]
    path = path * mask
    return path


def trim_or_pad_length(x: torch.Tensor, target_length: int, length_dim: int):
    """
    Adjusts the size of the specified dimension of tensor x to match `target_length`.
    
    Args:
        x:
            Input tensor.
        target_length: 
            Desired size of the specified dimension.
        length_dim: 
            The dimension to modify.
    
    Returns:
        torch.Tensor: The adjusted tensor.
    """
    current_length = x.shape[length_dim]

    if current_length > target_length:
        # Truncate the tensor
        slices = [slice(None)] * x.ndim
        slices[length_dim] = slice(0, target_length)
        return x[tuple(slices)]

    elif current_length < target_length:
        # Pad the tensor with zeros
        pad_shape = list(x.shape)
        pad_length = target_length - current_length

        pad_shape[length_dim] = pad_length  # Shape for left padding
        padding = torch.zeros(pad_shape, dtype=x.dtype, device=x.device)

        return torch.cat([x, padding], dim=length_dim)

    return x


def concat_non_padding(
    seq1: torch.Tensor, mask1: torch.BoolTensor, seq2: torch.Tensor,
    mask2: torch.BoolTensor
):
    """
    Args
        seq1 : Tensor (B, L1, E)
            First sequence.
        mask1 : BoolTensor (B, L1)
            True for valid tokens in seq1, False for padding.
        seq2 : Tensor (B, L2, E)
            Second sequence.
        mask2 : BoolTensor (B, L2)
            True for valid tokens in seq2, False for padding.

    Returns
        concat_seq : Tensor (B, L1+L2, E)
            Both sequences concatenated; valid tokens are left-aligned,
            padding on the right is 0.
        concat_mask: BoolTensor (B, L1+L2)
            Mask for the concatenated sequence.
        perm : LongTensor (B, L1+L2)
            Permutation that maps **original indices → new indices**.
            Needed for restoring the original sequences.
    """
    mask1, mask2 = mask1.bool(), mask2.bool()
    B, L1, E = seq1.shape
    L2 = seq2.size(1)
    L = L1 + L2

    seq_cat = torch.cat([seq1, seq2], dim=1)  # (B, L, E)
    mask_cat = torch.cat([mask1, mask2], dim=1)  # (B, L)

    # ----- Key step: stable sort so that all valid tokens move to the left -----
    # Padding positions get +L, guaranteeing the largest “score” → sorted to the end.
    positions = torch.arange(L, device=seq_cat.device).unsqueeze(0)  # (1, L)
    sort_score = positions + (~mask_cat) * L
    perm = sort_score.argsort(dim=1, stable=True)  # (B, L)

    # Build concatenated sequence & mask
    gather_idx = perm.unsqueeze(-1).expand(-1, -1, E)  # (B, L, E)
    concat_seq = seq_cat.gather(1, gather_idx)
    concat_mask = mask_cat.gather(1, perm)

    # Explicitly zero out the right-hand padding region for safety
    concat_seq = concat_seq * concat_mask.unsqueeze(-1)

    return concat_seq, concat_mask, perm


def restore_from_concat(
    concat_seq: torch.Tensor, mask1: torch.BoolTensor, mask2: torch.BoolTensor,
    perm: torch.LongTensor
):
    """
    Restore (seq1, seq2) from the concatenated sequence produced by
    `concat_non_padding`, using the returned permutation `perm`.
    Fully vectorised — no Python loops.
    """
    mask1, mask2 = mask1.bool(), mask2.bool()
    B, L1 = mask1.shape
    L2 = mask2.size(1)
    E = concat_seq.size(-1)

    # Inverse permutation: maps **new_idx → old_idx**
    inv_perm = torch.empty_like(perm)
    inv_perm.scatter_(
        1, perm,
        torch.arange(L1 + L2, device=perm.device).unsqueeze(0).expand(B, -1)
    )

    # Bring tokens back to their original order
    gather_idx = inv_perm.unsqueeze(-1).expand(-1, -1, E)
    seq_cat_rec = concat_seq.gather(1, gather_idx)  # (B, L1+L2, E)

    # Split back into the two sequences and mask out padding positions
    seq1_restore, seq2_restore = seq_cat_rec.split([L1, L2], dim=1)
    seq1_restore = seq1_restore * mask1.unsqueeze(-1)
    seq2_restore = seq2_restore * mask2.unsqueeze(-1)

    return seq1_restore, seq2_restore


def contains_nan(data):
    """check if data contains NaN"""
    if isinstance(data, torch.Tensor):
        return torch.isnan(data).any().item()
    elif isinstance(data, np.ndarray):
        return np.isnan(data).any()
    elif isinstance(data, float):
        return math.isnan(data)
    elif isinstance(data, (list, tuple)):
        return any(contains_nan(x) for x in data)
    elif isinstance(data, dict):
        return any(contains_nan(v) for v in data.values())
    return False


def check_nan_in_batch(batch):
    """check if batch contains NaN and return nan audio ids"""
    assert type(batch)==dict,"batch type error" 
    nan_audio_ids=[]
    audio_ids=batch["audio_id"]
    audio_id2content={}
    for idx,audio_id in enumerate(audio_ids):
        content=[]
        for k,v in batch.items():
            if k=="audio_id":
                continue
            content.append(v[idx])
        audio_id2content[audio_id]=content
    
    for audio_id,content in audio_id2content.items():
        if contains_nan(content):
            nan_audio_ids.append(audio_id)
            print(f"{audio_id} contains NaN")
    return nan_audio_ids