Spaces:
Runtime error
Runtime error
File size: 9,184 Bytes
4853fdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import logging
import math
from typing import Callable
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn
logger = logging.Logger(__file__)
def remove_key_prefix_factory(prefix: str = "module."):
def func(
model_dict: dict[str, torch.Tensor], state_dict: dict[str,
torch.Tensor]
) -> dict[str, torch.Tensor]:
state_dict = {
key[len(prefix):]: value
for key, value in state_dict.items() if key.startswith(prefix)
}
return state_dict
return func
def merge_matched_keys(
model_dict: dict[str, torch.Tensor], state_dict: dict[str, torch.Tensor]
) -> dict[str, torch.Tensor]:
"""
Args:
model_dict:
The state dict of the current model, which is going to load pretrained parameters
state_dict:
A dictionary of parameters from a pre-trained model.
Returns:
dict[str, torch.Tensor]:
The updated state dict, where parameters with matched keys and shape are
updated with values in `state_dict`.
"""
pretrained_dict = {}
mismatch_keys = []
for key, value in state_dict.items():
if key in model_dict and model_dict[key].shape == value.shape:
pretrained_dict[key] = value
else:
mismatch_keys.append(key)
logger.info(
f"Loading pre-trained model, with mismatched keys {mismatch_keys}"
)
model_dict.update(pretrained_dict)
return model_dict
def load_pretrained_model(
model: nn.Module,
ckpt_or_state_dict: str | Path | dict[str, torch.Tensor],
state_dict_process_fn: Callable = merge_matched_keys
) -> None:
state_dict = ckpt_or_state_dict
if not isinstance(state_dict, dict):
state_dict = torch.load(ckpt_or_state_dict, "cpu")
model_dict = model.state_dict()
state_dict = state_dict_process_fn(model_dict, state_dict)
model.load_state_dict(state_dict)
def create_mask_from_length(
lengths: torch.Tensor, max_length: int | None = None
):
if max_length is None:
max_length = max(lengths)
idxs = torch.arange(max_length).reshape(1, -1) # (1, max_length)
mask = idxs.to(lengths.device) < lengths.view(-1, 1)
# (1, max_length) < (batch_size, 1) -> (batch_size, max_length)
return mask
def loss_with_mask(
loss: torch.Tensor,
mask: torch.Tensor,
reduce: bool = True
) -> torch.Tensor:
"""
Apply a mask to the loss tensor and optionally reduce it.
Args:
loss: Tensor of shape (b, t, ...) representing the loss values.
mask: Tensor of shape (b, t) where 1 indicates valid positions and 0 indicates masked positions.
reduce: If True, return a single scalar value; otherwise, return a tensor of shape (b,).
Returns:
torch.Tensor: A scalar if reduce is True, otherwise a tensor of shape (b,).
"""
expanded_mask = mask[(..., ) + (None, ) * (loss.ndim - mask.ndim)]
expanded_mask = expanded_mask.expand_as(loss)
masked_loss = loss * expanded_mask
sum_dims = tuple(range(1, loss.ndim))
loss_sum = masked_loss.sum(dim=sum_dims)
mask_sum = expanded_mask.sum(dim=sum_dims)
loss = loss_sum / mask_sum
if reduce:
return loss.mean()
else:
return loss
def convert_pad_shape(pad_shape: list[list[int]]):
l = pad_shape[::-1]
pad_shape = [item for sublist in l for item in sublist]
return pad_shape
def create_alignment_path(duration: torch.Tensor, mask: torch.Tensor):
device = duration.device
b, t_x, t_y = mask.shape
cum_duration = torch.cumsum(duration, 1)
cum_duration_flat = cum_duration.view(b * t_x)
path = create_mask_from_length(cum_duration_flat, t_y).float()
path = path.view(b, t_x, t_y)
# take the diff on the `t_x` axis
path = path - torch.nn.functional.pad(
path, convert_pad_shape([[0, 0], [1, 0], [0, 0]])
)[:, :-1]
path = path * mask
return path
def trim_or_pad_length(x: torch.Tensor, target_length: int, length_dim: int):
"""
Adjusts the size of the specified dimension of tensor x to match `target_length`.
Args:
x:
Input tensor.
target_length:
Desired size of the specified dimension.
length_dim:
The dimension to modify.
Returns:
torch.Tensor: The adjusted tensor.
"""
current_length = x.shape[length_dim]
if current_length > target_length:
# Truncate the tensor
slices = [slice(None)] * x.ndim
slices[length_dim] = slice(0, target_length)
return x[tuple(slices)]
elif current_length < target_length:
# Pad the tensor with zeros
pad_shape = list(x.shape)
pad_length = target_length - current_length
pad_shape[length_dim] = pad_length # Shape for left padding
padding = torch.zeros(pad_shape, dtype=x.dtype, device=x.device)
return torch.cat([x, padding], dim=length_dim)
return x
def concat_non_padding(
seq1: torch.Tensor, mask1: torch.BoolTensor, seq2: torch.Tensor,
mask2: torch.BoolTensor
):
"""
Args
seq1 : Tensor (B, L1, E)
First sequence.
mask1 : BoolTensor (B, L1)
True for valid tokens in seq1, False for padding.
seq2 : Tensor (B, L2, E)
Second sequence.
mask2 : BoolTensor (B, L2)
True for valid tokens in seq2, False for padding.
Returns
concat_seq : Tensor (B, L1+L2, E)
Both sequences concatenated; valid tokens are left-aligned,
padding on the right is 0.
concat_mask: BoolTensor (B, L1+L2)
Mask for the concatenated sequence.
perm : LongTensor (B, L1+L2)
Permutation that maps **original indices → new indices**.
Needed for restoring the original sequences.
"""
mask1, mask2 = mask1.bool(), mask2.bool()
B, L1, E = seq1.shape
L2 = seq2.size(1)
L = L1 + L2
seq_cat = torch.cat([seq1, seq2], dim=1) # (B, L, E)
mask_cat = torch.cat([mask1, mask2], dim=1) # (B, L)
# ----- Key step: stable sort so that all valid tokens move to the left -----
# Padding positions get +L, guaranteeing the largest “score” → sorted to the end.
positions = torch.arange(L, device=seq_cat.device).unsqueeze(0) # (1, L)
sort_score = positions + (~mask_cat) * L
perm = sort_score.argsort(dim=1, stable=True) # (B, L)
# Build concatenated sequence & mask
gather_idx = perm.unsqueeze(-1).expand(-1, -1, E) # (B, L, E)
concat_seq = seq_cat.gather(1, gather_idx)
concat_mask = mask_cat.gather(1, perm)
# Explicitly zero out the right-hand padding region for safety
concat_seq = concat_seq * concat_mask.unsqueeze(-1)
return concat_seq, concat_mask, perm
def restore_from_concat(
concat_seq: torch.Tensor, mask1: torch.BoolTensor, mask2: torch.BoolTensor,
perm: torch.LongTensor
):
"""
Restore (seq1, seq2) from the concatenated sequence produced by
`concat_non_padding`, using the returned permutation `perm`.
Fully vectorised — no Python loops.
"""
mask1, mask2 = mask1.bool(), mask2.bool()
B, L1 = mask1.shape
L2 = mask2.size(1)
E = concat_seq.size(-1)
# Inverse permutation: maps **new_idx → old_idx**
inv_perm = torch.empty_like(perm)
inv_perm.scatter_(
1, perm,
torch.arange(L1 + L2, device=perm.device).unsqueeze(0).expand(B, -1)
)
# Bring tokens back to their original order
gather_idx = inv_perm.unsqueeze(-1).expand(-1, -1, E)
seq_cat_rec = concat_seq.gather(1, gather_idx) # (B, L1+L2, E)
# Split back into the two sequences and mask out padding positions
seq1_restore, seq2_restore = seq_cat_rec.split([L1, L2], dim=1)
seq1_restore = seq1_restore * mask1.unsqueeze(-1)
seq2_restore = seq2_restore * mask2.unsqueeze(-1)
return seq1_restore, seq2_restore
def contains_nan(data):
"""check if data contains NaN"""
if isinstance(data, torch.Tensor):
return torch.isnan(data).any().item()
elif isinstance(data, np.ndarray):
return np.isnan(data).any()
elif isinstance(data, float):
return math.isnan(data)
elif isinstance(data, (list, tuple)):
return any(contains_nan(x) for x in data)
elif isinstance(data, dict):
return any(contains_nan(v) for v in data.values())
return False
def check_nan_in_batch(batch):
"""check if batch contains NaN and return nan audio ids"""
assert type(batch)==dict,"batch type error"
nan_audio_ids=[]
audio_ids=batch["audio_id"]
audio_id2content={}
for idx,audio_id in enumerate(audio_ids):
content=[]
for k,v in batch.items():
if k=="audio_id":
continue
content.append(v[idx])
audio_id2content[audio_id]=content
for audio_id,content in audio_id2content.items():
if contains_nan(content):
nan_audio_ids.append(audio_id)
print(f"{audio_id} contains NaN")
return nan_audio_ids
|