Spaces:
Sleeping
Sleeping
File size: 5,627 Bytes
e6bb5bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
from dotenv import load_dotenv
import os
import pandas as pd
from httpx import Client
from huggingface_hub.utils import logging
from functools import lru_cache
from tqdm.contrib.concurrent import thread_map
from huggingface_hub import HfApi
import gradio as gr
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
from urllib.parse import quote
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables"
BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co"
logger = logging.get_logger(__name__)
headers = {
"authorization": f"Bearer ${HF_TOKEN}",
}
client = Client(headers=headers)
api = HfApi(token=HF_TOKEN)
def get_first_config_name(dataset: str):
try:
resp = client.get(f"{BASE_DATASETS_SERVER_URL}/splits?dataset={dataset}")
data = resp.json()
return data["splits"][0]["config"][0]
except Exception as e:
logger.error(f"Failed to get splits for {dataset}: {e}")
return None
def datasets_server_valid_rows(dataset: str):
try:
resp = client.get(f"{BASE_DATASETS_SERVER_URL}/is-valid?dataset={dataset}")
return resp.json()["viewer"]
except Exception as e:
logger.error(f"Failed to get is-valid for {dataset}: {e}")
return None
def dataset_is_valid(dataset):
return dataset if datasets_server_valid_rows(dataset.id) else None
def get_first_config_and_split_name(hub_id: str):
try:
resp = client.get(
f"https://datasets-server.huggingface.co/splits?dataset={hub_id}"
)
data = resp.json()
return data["splits"][0]["config"], data["splits"][0]["split"]
except Exception as e:
logger.error(f"Failed to get splits for {hub_id}: {e}")
return None
def get_dataset_info(hub_id: str, config: str | None = None):
if config is None:
config = get_first_config_and_split_name(hub_id)
if config is None:
return None
else:
config = config[0]
resp = client.get(
f"{BASE_DATASETS_SERVER_URL}/info?dataset={hub_id}&config={config}"
)
resp.raise_for_status()
return resp.json()
def dataset_with_info(dataset):
try:
if info := get_dataset_info(dataset.id):
columns = info.get("dataset_info", {}).get("features", {})
if columns is not None:
return {
"dataset": dataset.id,
"column_names": ','.join(list(columns.keys())),
"text": f"{dataset.id}-{','.join(list(columns.keys()))}",
"likes": dataset.likes,
"downloads": dataset.downloads,
"created_at": dataset.created_at,
"tags": dataset.tags,
}
except Exception as e:
logger.error(f"Failed to get info for {dataset.id}: {e}")
return None
@lru_cache(maxsize=100)
def prep_data():
datasets = list(api.list_datasets(limit=None, sort="createdAt", direction=-1))
print(f"Found {len(datasets)} datasets in the hub.")
logger.info(f"Found {len(datasets)} datasets.")
has_server = thread_map(
dataset_is_valid,
datasets,
)
datasets_with_server = [x for x in has_server if x is not None]
print(f"Found {len(datasets_with_server)} datasets with server.")
dataset_infos = thread_map(dataset_with_info, datasets_with_server)
dataset_infos = [x for x in dataset_infos if x is not None]
print(f"Found {len(dataset_infos)} datasets with server data.")
print(dataset_infos[0])
return dataset_infos
all_datasets = prep_data()
all_datasets_df = pd.DataFrame.from_dict(all_datasets)
print(all_datasets_df.head())
text = all_datasets_df['text']
encoder = SentenceTransformer("paraphrase-mpnet-base-v2")
vectors = encoder.encode(text)
vector_dimension = vectors.shape[1]
print("Start indexing")
index = faiss.IndexFlatL2(vector_dimension)
faiss.normalize_L2(vectors)
index.add(vectors)
print("Indexing done")
def render_model_hub_link(hub_id):
link = f"https://huggingface.co/datasets/{quote(hub_id)}"
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{hub_id}</a>'
def search(dataset_name):
print(f"start search for {dataset_name}")
try:
dataset_row = all_datasets_df[all_datasets_df.dataset == dataset_name].iloc[0]
print(dataset_row)
except IndexError:
return pd.DataFrame([{"error": f"❌ Dataset does not exist or is not supported"}])
text = dataset_row["text"]
search_vector = encoder.encode(text)
_vector = np.array([search_vector])
faiss.normalize_L2(_vector)
distances, ann = index.search(_vector, k=20)
results = pd.DataFrame({'distances': distances[0], 'ann': ann[0]})
print("results for distances and ann")
print(results)
merge = pd.merge(results, all_datasets_df, left_on="ann", right_index=True)
print("resultst for merged df (distances,ann, dataset info)")
merge["dataset"] = merge["dataset"].apply(render_model_hub_link)
return merge
with gr.Blocks() as demo:
gr.Markdown("# Search similar Datasets on Hugging Face")
gr.Markdown("This space shows similar dataset based on column name and types")
dataset_name = gr.Textbox(
"asoria/bolivian-population", label="Dataset Name"
)
btn = gr.Button("Show similar datasets")
df = gr.DataFrame(datatype="markdown")
btn.click(search, dataset_name, df)
demo.launch()
|