File size: 12,903 Bytes
13e64c9 abeb9ee 13e64c9 5ffa949 13e64c9 a412070 13e64c9 5ffa949 92b56a4 13e64c9 9623f5b 0d875dc 13e64c9 9623f5b 13e64c9 9623f5b 13e64c9 84a53a6 13e64c9 1644adb 13e64c9 b32f418 13e64c9 efe0e7e 13e64c9 efe0e7e 13e64c9 efe0e7e 13e64c9 efe0e7e 13e64c9 efe0e7e 13e64c9 efe0e7e 13e64c9 efe0e7e 13e64c9 efe0e7e 13e64c9 efe0e7e 13e64c9 6e2d63b 13e64c9 6e2d63b 92b56a4 6e2d63b 13e64c9 6e2d63b abeb9ee 3b31b54 13e64c9 82b1ef4 abeb9ee 3b31b54 6e2d63b ed62ab6 6e2d63b 0711bcf 6e2d63b a412070 6e2d63b 3b31b54 6e2d63b 13e64c9 6e2d63b 13e64c9 6e2d63b 3b31b54 6e2d63b a139ebd 13e64c9 6e2d63b 13e64c9 6e2d63b 13e64c9 35991eb 13e64c9 5839c4e 9b53cbd ad87b65 13e64c9 35991eb 13e64c9 9b53cbd 13e64c9 9623f5b 13e64c9 9623f5b b32f418 9623f5b 13e64c9 9623f5b 13e64c9 84a53a6 92b56a4 13e64c9 92b56a4 13e64c9 92b56a4 37ad719 13e64c9 b32f418 13e64c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
import os.path
import copy
import time as reqtime
import datetime
from pytz import timezone
import torch
import spaces
import gradio as gr
from x_transformer_1_23_2 import *
import random
import tqdm
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
# =================================================================================================
@spaces.GPU
def GenerateAccompaniment(input_midi, input_num_tokens, input_acc_type):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('Loading model...')
SEQ_LEN = 8192 # Models seq len
PAD_IDX = 767 # Models pad index
DEVICE = 'cuda' # 'cpu'
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 2048, depth = 4, heads = 16, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
model.to(DEVICE)
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Ultimate_Accompaniment_Transformer_Small_Improved_Trained_Model_13649_steps_0.3229_loss_0.898_acc.pth',
map_location=DEVICE))
print('=' * 70)
model.eval()
if DEVICE == 'cpu':
dtype = torch.bfloat16
else:
dtype = torch.float16
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
print('Done!')
print('=' * 70)
fn = os.path.basename(input_midi.name)
fn1 = fn.split('.')[0]
input_num_tokens = max(4, min(128, input_num_tokens))
print('-' * 70)
print('Input file name:', fn)
print('Req num toks:', input_num_tokens)
print('Force acc:', input_acc_type)
print('-' * 70)
#===============================================================================
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
#===============================================================================
# Enhanced score notes
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
escore_notes = [e for e in escore_notes if e[3] != 9]
if len(escore_notes) > 0:
#=======================================================
# PRE-PROCESSING
#===============================================================================
# Augmented enhanced score notes
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32)
cscore = TMIDIX.chordify_score([1000, escore_notes])
melody = TMIDIX.fix_monophonic_score_durations([sorted(e, key=lambda x: x[4], reverse=True)[0] for e in cscore])
#=======================================================
# FINAL PROCESSING
melody_chords = []
#=======================================================
# MAIN PROCESSING CYCLE
#=======================================================
pe = cscore[0][0]
mpe = melody[0]
midx = 1
for i, c in enumerate(cscore):
c.sort(key=lambda x: (x[3], x[4]), reverse=True)
# Next melody note
if midx < len(melody):
# Time
mtime = melody[midx][1]-mpe[1]
mdur = melody[midx][2]
mdelta_time = max(0, min(127, mtime))
# Durations
mdur = max(0, min(127, mdur))
# Pitch
mptc = melody[midx][4]
else:
mtime = 127-mpe[1]
mdur = mpe[2]
mdelta_time = max(0, min(127, mtime))
# Durations
mdur = max(0, min(127, mdur))
# Pitch
mptc = mpe[4]
e = melody[i]
#=======================================================
# Timings...
time = e[1]-pe[1]
dur = e[2]
delta_time = max(0, min(127, time))
# Durations
dur = max(0, min(127, dur))
# Pitches
ptc = max(1, min(127, e[4]))
if ptc < 60:
ptc = 60 + (ptc % 12)
cha = e[3]
#=======================================================
# FINAL NOTE SEQ
if midx < len(melody):
melody_chords.append([delta_time, dur+128, ptc+384, mdelta_time+512, mptc+640])
mpe = melody[midx]
midx += 1
else:
melody_chords.append([delta_time, dur+128, ptc+384, mdelta_time+512, mptc+640])
pe = e
#===============================================================================
print('=' * 70)
print('Sample output events', melody_chords[:5])
print('=' * 70)
print('Generating...')
output = []
force_acc = input_acc_type
num_toks_per_note = 32
temperature=0.9
max_drums_limit=4
num_memory_tokens=4096
output1 = []
output2 = []
ctime = 0
for m in melody_chords[:input_num_tokens]:
mel = copy.deepcopy(m)
mel[0] = mel[0]-ctime
output1.extend(mel)
input_seq = output1
if force_acc:
x = torch.LongTensor([input_seq+[0]]).to(DEVICE)
else:
x = torch.LongTensor([input_seq]).to(DEVICE)
time = input_seq[-2]-512
cur_time = 0
ctime = 0
for _ in range(num_toks_per_note):
with ctx:
out = model.generate(x[-num_memory_tokens:],
1,
temperature=temperature,
return_prime=False,
verbose=False)
o = out.tolist()[0][0]
if 0 <= o < 128:
cur_time += o
if cur_time < time and o < 384:
ctime = cur_time
out = torch.LongTensor([[o]]).to(DEVICE)
x = torch.cat((x, out), 1)
else:
break
outy = x.tolist()[0][len(input_seq):]
output1.extend(outy)
output2.append(outy)
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
print('Sample INTs', output1[:12])
print('=' * 70)
out1 = output2
accompaniment_MIDI_patch_number = 0
melody_MIDI_patch_number = 40
if len(out1) != 0:
song = out1
song_f = []
time = 0
ntime = 0
ndur = 0
vel = 90
npitch = 0
channel = 0
patches = [0] * 16
patches[0] = accompaniment_MIDI_patch_number
patches[3] = melody_MIDI_patch_number
for i, ss in enumerate(song):
ntime += melody_chords[i][0] * 32
ndur = (melody_chords[i][1]-128) * 32
nchannel = 1
npitch = (melody_chords[i][2]-256) % 128
vel = max(40, npitch)+20
song_f.append(['note', ntime, ndur, 3, npitch, vel, melody_MIDI_patch_number ])
time = ntime
for s in ss:
if 0 <= s < 128:
time += s * 32
if 128 <= s < 256:
dur = (s-128) * 32
if 256 <= s < 384:
pitch = (s-256)
vel = max(40, pitch)
song_f.append(['note', time, dur, 0, pitch, vel, accompaniment_MIDI_patch_number])
fn1 = "Ultimate-Accompaniment-Transformer-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Ultimate Accompaniment Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1)
output_midi_summary = str(song_f[:3])
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI summary:', '')
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Ultimate Accompaniment Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique accompaniment for any melody</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Ultimate-Accompaniment-Transformer&style=flat)\n\n"
"Accompaniment generation for any monophonic melody\n\n"
"Check out [Ultimate Drums Transformer](https://github.com/asigalov61/Ultimate-Accompaniment-Transformer) on GitHub!\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/asigalov61/Ultimate-Accompaniment-Transformer/blob/main/Ultimate_Accompaniment_Transformer.ipynb)"
" for faster execution and endless generation"
)
gr.Markdown("## Upload your MIDI or select a sample example MIDI")
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
input_num_tokens = gr.Slider(4, 128, value=32, step=1, label="Number of composition chords to generate accompaniment for")
input_acc_type = gr.Checkbox(label='Force accompaniment generation for each melody note')
run_btn = gr.Button("generate", variant="primary")
gr.Markdown("## Generation results")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_midi_summary = gr.Textbox(label="Output MIDI summary")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(GenerateAccompaniment, [input_midi, input_num_tokens, input_acc_type],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
gr.Examples(
[["Ultimate-Accompaniment-Transformer-Melody-Seed-1.mid", 128, True],
["Ultimate-Accompaniment-Transformer-Melody-Seed-2.mid", 128, False],
["Ultimate-Accompaniment-Transformer-Melody-Seed-3.mid", 128, True],
["Ultimate-Accompaniment-Transformer-Melody-Seed-4.mid", 128, False],
["Ultimate-Accompaniment-Transformer-Melody-Seed-5.mid", 128, True],
["Ultimate-Accompaniment-Transformer-Melody-Seed-6.mid", 128, False],
["Ultimate-Accompaniment-Transformer-Melody-Seed-7.mid", 128, True]],
[input_midi, input_num_tokens, input_acc_type],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
GenerateAccompaniment,
cache_examples=True,
)
app.queue().launch() |