File size: 12,903 Bytes
13e64c9
abeb9ee
13e64c9
 
 
 
 
 
5ffa949
13e64c9
 
 
 
 
 
 
 
 
 
a412070
13e64c9
 
5ffa949
92b56a4
13e64c9
 
 
 
 
 
 
9623f5b
0d875dc
13e64c9
 
 
 
 
 
9623f5b
13e64c9
 
 
 
 
 
 
 
 
 
9623f5b
13e64c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84a53a6
13e64c9
 
 
 
1644adb
13e64c9
 
 
b32f418
13e64c9
 
 
 
 
 
efe0e7e
13e64c9
efe0e7e
13e64c9
efe0e7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13e64c9
efe0e7e
13e64c9
efe0e7e
 
13e64c9
efe0e7e
13e64c9
efe0e7e
 
13e64c9
efe0e7e
 
 
 
 
 
13e64c9
efe0e7e
13e64c9
 
 
 
 
6e2d63b
13e64c9
 
 
 
6e2d63b
92b56a4
6e2d63b
13e64c9
 
 
 
6e2d63b
 
abeb9ee
3b31b54
13e64c9
82b1ef4
abeb9ee
 
3b31b54
6e2d63b
ed62ab6
6e2d63b
 
 
 
0711bcf
6e2d63b
a412070
6e2d63b
 
 
 
3b31b54
6e2d63b
 
13e64c9
 
 
 
 
 
6e2d63b
13e64c9
6e2d63b
 
 
 
 
3b31b54
 
6e2d63b
a139ebd
13e64c9
6e2d63b
 
 
 
 
 
 
13e64c9
 
 
 
 
 
 
 
 
6e2d63b
13e64c9
 
35991eb
13e64c9
5839c4e
 
 
9b53cbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad87b65
 
13e64c9
 
35991eb
13e64c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b53cbd
13e64c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9623f5b
 
13e64c9
9623f5b
b32f418
9623f5b
13e64c9
9623f5b
13e64c9
 
 
 
 
84a53a6
92b56a4
13e64c9
 
 
 
 
 
 
 
 
 
 
 
92b56a4
13e64c9
 
 
92b56a4
 
 
 
 
 
 
37ad719
13e64c9
b32f418
13e64c9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import os.path
import copy
import time as reqtime
import datetime
from pytz import timezone

import torch

import spaces
import gradio as gr

from x_transformer_1_23_2 import *
import random
import tqdm

from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX

import matplotlib.pyplot as plt
    
# =================================================================================================
                       
@spaces.GPU
def GenerateAccompaniment(input_midi, input_num_tokens, input_acc_type):
    print('=' * 70)
    print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    start_time = reqtime.time()

    print('Loading model...')

    SEQ_LEN = 8192 # Models seq len
    PAD_IDX = 767 # Models pad index
    DEVICE = 'cuda' # 'cpu'

    # instantiate the model

    model = TransformerWrapper(
        num_tokens = PAD_IDX+1,
        max_seq_len = SEQ_LEN,
        attn_layers = Decoder(dim = 2048, depth = 4, heads = 16, attn_flash = True)
        )
    
    model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)

    model.to(DEVICE)
    print('=' * 70)

    print('Loading model checkpoint...')

    model.load_state_dict(
        torch.load('Ultimate_Accompaniment_Transformer_Small_Improved_Trained_Model_13649_steps_0.3229_loss_0.898_acc.pth',
                   map_location=DEVICE))
    print('=' * 70)

    model.eval()

    if DEVICE == 'cpu':
        dtype = torch.bfloat16
    else:
        dtype = torch.float16

    ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)

    print('Done!')
    print('=' * 70)

    fn = os.path.basename(input_midi.name)
    fn1 = fn.split('.')[0]

    input_num_tokens = max(4, min(128, input_num_tokens))

    print('-' * 70)
    print('Input file name:', fn)
    print('Req num toks:', input_num_tokens)
    print('Force acc:', input_acc_type)
    print('-' * 70)

    #===============================================================================
    raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
    
    #===============================================================================
    # Enhanced score notes
    
    escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
    
    escore_notes = [e for e in escore_notes if e[3] != 9]
    
    if len(escore_notes) > 0:
    
      #=======================================================
      # PRE-PROCESSING
    
      #===============================================================================
      # Augmented enhanced score notes
    
      escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32)
    
      cscore = TMIDIX.chordify_score([1000, escore_notes])
    
      melody = TMIDIX.fix_monophonic_score_durations([sorted(e, key=lambda x: x[4], reverse=True)[0] for e in cscore])
    
      #=======================================================
      # FINAL PROCESSING
    
      melody_chords = []
    
      #=======================================================
      # MAIN PROCESSING CYCLE
      #=======================================================
    
      pe = cscore[0][0]
    
      mpe = melody[0]
    
      midx = 1
    
      for i, c in enumerate(cscore):
    
          c.sort(key=lambda x: (x[3], x[4]), reverse=True)
    
          # Next melody note
    
          if midx < len(melody):
    
            # Time
            mtime = melody[midx][1]-mpe[1]
    
            mdur = melody[midx][2]
    
            mdelta_time = max(0, min(127, mtime))
    
            # Durations
            mdur = max(0, min(127, mdur))
    
            # Pitch
            mptc = melody[midx][4]
    
          else:
            mtime = 127-mpe[1]
    
            mdur = mpe[2]
    
            mdelta_time = max(0, min(127, mtime))
    
            # Durations
            mdur = max(0, min(127, mdur))
    
            # Pitch
            mptc = mpe[4]
    
    
          e = melody[i]
    
          #=======================================================
          # Timings...
    
          time = e[1]-pe[1]
    
          dur = e[2]
    
          delta_time = max(0, min(127, time))
    
          # Durations
    
          dur = max(0, min(127, dur))
    
          # Pitches
    
          ptc = max(1, min(127, e[4]))
    
          if ptc < 60:
            ptc = 60 + (ptc % 12)
    
          cha = e[3]
    
          #=======================================================
          # FINAL NOTE SEQ
    
          if midx < len(melody):
            melody_chords.append([delta_time, dur+128, ptc+384, mdelta_time+512, mptc+640])
            mpe = melody[midx]
            midx += 1
          else:
            melody_chords.append([delta_time, dur+128, ptc+384, mdelta_time+512, mptc+640])
    
          pe = e

    #===============================================================================

    print('=' * 70)
    
    print('Sample output events', melody_chords[:5])
    print('=' * 70)
    print('Generating...')

    output = []
    
    force_acc = input_acc_type
    num_toks_per_note = 32
    temperature=0.9
    max_drums_limit=4
    num_memory_tokens=4096

    output1 = []
    output2 = []

    ctime = 0

    for m in melody_chords[:input_num_tokens]:

        mel = copy.deepcopy(m)
        mel[0] = mel[0]-ctime
    
        output1.extend(mel)

        input_seq = output1
    
        if force_acc:
          x = torch.LongTensor([input_seq+[0]]).to(DEVICE)
        else:
          x = torch.LongTensor([input_seq]).to(DEVICE)
    
        time = input_seq[-2]-512
    
        cur_time = 0
        ctime = 0
    
        for _ in range(num_toks_per_note):
          with ctx:
            out = model.generate(x[-num_memory_tokens:],
                                1,
                                temperature=temperature,
                                return_prime=False,
                                verbose=False)
    
          o = out.tolist()[0][0]
    
          if 0 <= o < 128:
            cur_time += o
    
          if cur_time < time and o < 384:
              
            ctime = cur_time
    
            out = torch.LongTensor([[o]]).to(DEVICE)
            x = torch.cat((x, out), 1)
          else:
            break
    
        outy =  x.tolist()[0][len(input_seq):]

        output1.extend(outy)
        output2.append(outy)

    print('=' * 70)
    print('Done!')
    print('=' * 70)
    
    #===============================================================================
    print('Rendering results...')
    
    print('=' * 70)
    print('Sample INTs', output1[:12])
    print('=' * 70)
    
    out1 = output2

    accompaniment_MIDI_patch_number = 0
    melody_MIDI_patch_number = 40

    if len(out1) != 0:
    
        song = out1
        song_f = []
    
        time = 0
        ntime = 0
        ndur = 0
        vel = 90
        npitch = 0
        channel = 0
    
        patches = [0] * 16
        patches[0] = accompaniment_MIDI_patch_number
        patches[3] = melody_MIDI_patch_number
    
        for i, ss in enumerate(song):
    
                ntime += melody_chords[i][0] * 32
                ndur = (melody_chords[i][1]-128) * 32
                nchannel = 1
                npitch = (melody_chords[i][2]-256) % 128
                vel = max(40, npitch)+20
    
                song_f.append(['note', ntime, ndur, 3, npitch, vel, melody_MIDI_patch_number ])
    
                time = ntime
    
                for s in ss:
    
                  if 0 <= s < 128:
    
                      time += s * 32
    
                  if 128 <= s < 256:
    
                      dur = (s-128) * 32
    
                  if 256 <= s < 384:
    
                      pitch = (s-256)
    
                      vel = max(40, pitch)
    
                      song_f.append(['note', time, dur, 0, pitch, vel, accompaniment_MIDI_patch_number])

    fn1 = "Ultimate-Accompaniment-Transformer-Composition"
    
    detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
                                                              output_signature = 'Ultimate Accompaniment Transformer',
                                                              output_file_name = fn1,
                                                              track_name='Project Los Angeles',
                                                              list_of_MIDI_patches=patches
                                                              )
    
    new_fn = fn1+'.mid'
            
    
    audio = midi_to_colab_audio(new_fn, 
                        soundfont_path=soundfont,
                        sample_rate=16000,
                        volume_scale=10,
                        output_for_gradio=True
                        )
    
    print('Done!')
    print('=' * 70)

    #========================================================

    output_midi_title = str(fn1)
    output_midi_summary = str(song_f[:3])
    output_midi = str(new_fn)
    output_audio = (16000, audio)
    
    output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)

    print('Output MIDI file name:', output_midi)
    print('Output MIDI title:', output_midi_title)
    print('Output MIDI summary:', '')
    print('=' * 70) 
    

    #========================================================
    
    print('-' * 70)
    print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('-' * 70)
    print('Req execution time:', (reqtime.time() - start_time), 'sec')

    return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot

# =================================================================================================

if __name__ == "__main__":
    
    PDT = timezone('US/Pacific')
    
    print('=' * 70)
    print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('=' * 70)

    soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
   
    app = gr.Blocks()
    with app:
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Ultimate Accompaniment Transformer</h1>")
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique accompaniment for any melody</h1>")
        gr.Markdown(
            "![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Ultimate-Accompaniment-Transformer&style=flat)\n\n"
            "Accompaniment generation for any monophonic melody\n\n"
            "Check out [Ultimate Drums Transformer](https://github.com/asigalov61/Ultimate-Accompaniment-Transformer) on GitHub!\n\n"
            "[Open In Colab]"
            "(https://colab.research.google.com/github/asigalov61/Ultimate-Accompaniment-Transformer/blob/main/Ultimate_Accompaniment_Transformer.ipynb)"
            " for faster execution and endless generation"
        )
        gr.Markdown("## Upload your MIDI or select a sample example MIDI")
        
        input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
        input_num_tokens = gr.Slider(4, 128, value=32, step=1, label="Number of composition chords to generate accompaniment for")
        input_acc_type = gr.Checkbox(label='Force accompaniment generation for each melody note')
        
        run_btn = gr.Button("generate", variant="primary")

        gr.Markdown("## Generation results")

        output_midi_title = gr.Textbox(label="Output MIDI title")
        output_midi_summary = gr.Textbox(label="Output MIDI summary")
        output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
        output_plot = gr.Plot(label="Output MIDI score plot")
        output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])


        run_event = run_btn.click(GenerateAccompaniment, [input_midi, input_num_tokens, input_acc_type],
                                  [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])

        gr.Examples(
            [["Ultimate-Accompaniment-Transformer-Melody-Seed-1.mid", 128, True], 
             ["Ultimate-Accompaniment-Transformer-Melody-Seed-2.mid", 128, False], 
             ["Ultimate-Accompaniment-Transformer-Melody-Seed-3.mid", 128, True],
             ["Ultimate-Accompaniment-Transformer-Melody-Seed-4.mid", 128, False],
             ["Ultimate-Accompaniment-Transformer-Melody-Seed-5.mid", 128, True],
             ["Ultimate-Accompaniment-Transformer-Melody-Seed-6.mid", 128, False],
             ["Ultimate-Accompaniment-Transformer-Melody-Seed-7.mid", 128, True]],
            [input_midi, input_num_tokens, input_acc_type],
            [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
            GenerateAccompaniment,
            cache_examples=True,
        )
        
        app.queue().launch()