File size: 12,009 Bytes
4ad544c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e99ce0
 
4ad544c
0e99ce0
4ad544c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import os.path

import time as reqtime
import datetime
from pytz import timezone

import torch

import spaces
import gradio as gr

from x_transformer_1_23_2 import *
import random
import tqdm

from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX

import matplotlib.pyplot as plt

in_space = os.getenv("SYSTEM") == "spaces"
         
# =================================================================================================
                       
@spaces.GPU
def GenerateAccompaniment(input_midi, input_num_tokens, input_conditioning_type, input_strip_notes):
    print('=' * 70)
    print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    start_time = reqtime.time()

    print('Loading model...')

    SEQ_LEN = 8192 # Models seq len
    PAD_IDX = 707 # Models pad index
    DEVICE = 'cuda' # 'cuda'

    # instantiate the model

    model = TransformerWrapper(
        num_tokens = PAD_IDX+1,
        max_seq_len = SEQ_LEN,
        attn_layers = Decoder(dim = 2048, depth = 4, heads = 16, attn_flash = True)
        )
    
    model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)

    model.to(DEVICE)
    print('=' * 70)

    print('Loading model checkpoint...')

    model.load_state_dict(
        torch.load('Chords_Progressions_Transformer_Small_2048_Trained_Model_12947_steps_0.9316_loss_0.7386_acc.pth',
                   map_location=DEVICE))
    print('=' * 70)

    model.eval()

    if DEVICE == 'cpu':
        dtype = torch.bfloat16
    else:
        dtype = torch.float16

    ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)

    print('Done!')
    print('=' * 70)

    fn = os.path.basename(input_midi.name)
    fn1 = fn.split('.')[0]

    input_num_tokens = max(4, min(128, input_num_tokens))

    print('-' * 70)
    print('Input file name:', fn)
    print('Req num toks:', input_num_tokens)
    print('Conditioning type:', input_conditioning_type)
    print('Strip notes:', input_strip_notes)
    print('-' * 70)

    #===============================================================================
    raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
    
    #===============================================================================
    # Enhanced score notes
    
    escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
    
    no_drums_escore_notes = [e for e in escore_notes if e[6] < 80]
    
    if len(no_drums_escore_notes) > 0:
    
        #=======================================================
        # PRE-PROCESSING
        
        #===============================================================================
        # Augmented enhanced score notes
        
        no_drums_escore_notes = TMIDIX.augment_enhanced_score_notes(no_drums_escore_notes)
        
        cscore = TMIDIX.chordify_score([1000, no_drums_escore_notes])
        
        clean_cscore = []
        
        for c in cscore:
            pitches = []
            cho = []
            for cc in c:
                if cc[4] not in pitches:
                    cho.append(cc)
                    pitches.append(cc[4])
        
            clean_cscore.append(cho)
        
        #=======================================================
        # FINAL PROCESSING
        
        melody_chords = []
        chords = []
        times = [0]
        durs = []
        
        #=======================================================
        # MAIN PROCESSING CYCLE
        #=======================================================
        
        pe = clean_cscore[0][0]
        
        first_chord = True
        
        for c in clean_cscore:
        
            # Chords
        
            c.sort(key=lambda x: x[4], reverse=True)
        
            tones_chord = sorted(set([cc[4] % 12 for cc in c]))
        
            try:
                chord_token = TMIDIX.ALL_CHORDS_SORTED.index(tones_chord)
            except:
                checked_tones_chord = TMIDIX.check_and_fix_tones_chord(tones_chord)
                chord_token = TMIDIX.ALL_CHORDS_SORTED.index(checked_tones_chord)
        
            melody_chords.extend([chord_token+384])
        
            if input_strip_notes:
              if len(tones_chord) > 1:
                chords.extend([chord_token+384])
        
            else:
              chords.extend([chord_token+384])
        
            if first_chord:
                    melody_chords.extend([0])
                    first_chord = False
        
            for e in c:
        
                #=======================================================
                # Timings...
        
                time = e[1]-pe[1]
        
                dur = e[2]
        
                if time != 0 and time % 2 != 0:
                    time += 1
                if dur % 2 != 0:
                    dur += 1
        
                delta_time = int(max(0, min(255, time)) / 2)
        
                # Durations
        
                dur = int(max(0, min(255, dur)) / 2)
        
                # Pitches
        
                ptc = max(1, min(127, e[4]))
        
                #=======================================================
                # FINAL NOTE SEQ
        
                # Writing final note asynchronously
        
                if delta_time != 0:
                    melody_chords.extend([delta_time, dur+128, ptc+256])
                    if input_strip_notes:
                      if len(c) > 1:
                        times.append(delta_time)
                        durs.append(dur+128)
                    else:
                        times.append(delta_time)
                        durs.append(dur+128)
                else:
                    melody_chords.extend([dur+128, ptc+256])
        
                pe = e
        
    #==================================================================

    print('=' * 70)
    
    print('Sample output events', melody_chords[:5])
    print('=' * 70)
    print('Generating...')

    output = []
    
    max_chords_limit = 8
    temperature=0.9
    num_memory_tokens=4096

    output = []
    
    idx = 0
    
    for c in chords[:input_num_tokens]:
     
        output.append(c)
    
        if input_conditioning_type == 'Chords-Times' or input_conditioning_type == 'Chords-Times-Durations':
          output.append(times[idx])
    
        if input_conditioning_type == 'Chords-Times-Durations':
          output.append(durs[idx])

        x = torch.tensor([output] * 1, dtype=torch.long, device='cuda')
        
        o = 0
        
        ncount = 0
        
        while o < 384 and ncount < max_chords_limit:
          with ctx:
            out = model.generate(x[-num_memory_tokens:],
                                1,
                                temperature=temperature,
                                return_prime=False,
                                verbose=False)
        
          o = out.tolist()[0][0]
        
          if 256 <= o < 384:
            ncount += 1
        
          if o < 384:
            x = torch.cat((x, out), 1)
        
        outy =  x.tolist()[0][len(output):]
          
        output.extend(outy)
    
        idx += 1

        if idx == len(chords[:input_num_tokens])-1:
            break

    print('=' * 70)
    print('Done!')
    print('=' * 70)
    
    #===============================================================================
    print('Rendering results...')
    
    print('=' * 70)
    print('Sample INTs', output[:12])
    print('=' * 70)
    
    out1 = output

    if len(out1) != 0:
    
        song = out1
        song_f = []
    
        time = 0
        dur = 0
        vel = 90
        pitch = 0
        channel = 0
        
        patches = [0] * 16
        
        channel = 0
        
        for ss in song:
        
          if 0 <= ss < 128:
        
              time += ss * 32
        
          if 128 <= ss < 256:
        
              dur = (ss-128) * 32
        
          if 256 <= ss < 384:
        
              pitch = (ss-256)
        
              vel = max(40, pitch)
        
              song_f.append(['note', time, dur, channel, pitch, vel, 0])

    fn1 = "Chords-Progressions-Transformer-Composition"
    
    detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
                                                              output_signature = 'Chords Progressions Transformer',
                                                              output_file_name = fn1,
                                                              track_name='Project Los Angeles',
                                                              list_of_MIDI_patches=patches
                                                              )
    
    new_fn = fn1+'.mid'
            
    
    audio = midi_to_colab_audio(new_fn, 
                        soundfont_path=soundfont,
                        sample_rate=16000,
                        volume_scale=10,
                        output_for_gradio=True
                        )
    
    print('Done!')
    print('=' * 70)

    #========================================================

    output_midi_title = str(fn1)
    output_midi_summary = str(song_f[:3])
    output_midi = str(new_fn)
    output_audio = (16000, audio)
    
    output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)

    print('Output MIDI file name:', output_midi)
    print('Output MIDI title:', output_midi_title)
    print('Output MIDI summary:', '')
    print('=' * 70) 
    

    #========================================================
    
    print('-' * 70)
    print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('-' * 70)
    print('Req execution time:', (reqtime.time() - start_time), 'sec')

    return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot

# =================================================================================================

if __name__ == "__main__":
    
    PDT = timezone('US/Pacific')
    
    print('=' * 70)
    print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('=' * 70)

    soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
   
    app = gr.Blocks()
    with app:
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Melody2Song Seq2Seq Music Transformer</h1>")
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique songs from melodies with se2seq music transformer</h1>")
        gr.Markdown(
            "![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Melody2Song-Seq2Seq-Music-Transformer&style=flat)\n\n")
        
        input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
        input_num_tokens = gr.Slider(4, 128, value=32, step=1, label="Number of composition chords to generate progression for")
        input_conditioning_type = gr.Radio(["Chords", "Chords-Times", "Chords-Times-Durations"], label="Conditioning type")
        input_strip_notes = gr.Checkbox(label="Strip notes from the composition")
        
        run_btn = gr.Button("generate", variant="primary")

        gr.Markdown("## Generation results")

        output_midi_title = gr.Textbox(label="Output MIDI title")
        output_midi_summary = gr.Textbox(label="Output MIDI summary")
        output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
        output_plot = gr.Plot(label="Output MIDI score plot")
        output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])


        run_event = run_btn.click(GenerateAccompaniment, [input_midi, input_num_tokens, input_conditioning_type, input_strip_notes],
                                  [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])

        app.queue().launch()