File size: 85,849 Bytes
0f9fc7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a78bd6
0f9fc7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d6df26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
#===================================================================================================================
#
# X Trasformer Module
#
# Partial x-transformers code With useful modifications
#
# Version 1.0
#
# Original source code courtesy of lucidrains
# https://github.com/lucidrains/x-transformers
#
# Original source code retrieved on 10/10/2023
#
# Project Los Angeles
# Tegridy Code 2023

#===================================================================================================================

# Critical dependencies
#
# !pip install torch
# !pip install einops

#===================================================================================================================

from functools import partial
from typing import Optional, Tuple

import torch
from torch import nn, einsum, Tensor
import torch.nn.functional as F
from torch.nn.attention import SDPBackend, sdpa_kernel

from collections import namedtuple
from functools import wraps
from packaging import version
from dataclasses import dataclass

from einops import rearrange, repeat

# constants

EfficientAttentionConfig = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient'])

@dataclass
class Intermediates:
    qk_similarities: Optional[Tensor] = None
    pre_softmax_attn: Optional[Tensor] = None
    post_softmax_attn: Optional[Tensor] = None
    cached_kv: Optional[Tuple[Tensor, Tensor]] = None

    def to_tuple(self):
        return (self.qk_similarities, self.pre_softmax_attn, self.post_softmax_attn)

# helpers

def exists(val):
    return val is not None

def default(val, d):
    return val if exists(val) else d

def compact(arr):
    return [*filter(exists, arr)]

def once(fn):
    called = False
    @wraps(fn)
    def inner(x):
        nonlocal called
        if called:
            return
        called = True
        return fn(x)
    return inner

print_once = once(print)

# functions for creating causal mask
# need a special one for onnx cpu (no support for .triu)

def create_causal_mask(i, j, device):
    return torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1)

def onnx_create_causal_mask(i, j, device):
    r = torch.arange(i, device = device)
    causal_mask = rearrange(r, 'i -> i 1') < rearrange(r, 'j -> 1 j')
    causal_mask = F.pad(causal_mask, (j - i, 0), value = False)
    return causal_mask

# main class

class Attend(nn.Module):
    def __init__(

        self,

        *,

        dropout = 0.,

        causal = False,

        heads = None,

        talking_heads = False,

        sparse_topk = None,

        scale = None,

        qk_norm = False,

        flash = False,

        add_zero_kv = False,

        onnxable = False

    ):
        super().__init__()
        self.scale = scale
        self.qk_norm = qk_norm

        self.causal = causal
        self.create_causal_mask = onnx_create_causal_mask if onnxable else create_causal_mask

        self.attn_fn = partial(F.softmax, dtype = torch.float32) if not qk_norm else F.softmax

        self.dropout = dropout
        self.attn_dropout = nn.Dropout(dropout)

        # talking heads

        assert not (flash and talking_heads), 'talking heads not compatible with flash attention'

        self.talking_heads = talking_heads
        if talking_heads:
            self.pre_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False)
            self.post_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False)

        # sparse topk

        assert not (flash and sparse_topk), 'sparse topk not compatible with flash attention'
        self.sparse_topk = sparse_topk

        # add a key / value token composed of zeros
        # in case this helps controlling outliers, proposed by https://www.evanmiller.org/attention-is-off-by-one.html

        self.add_zero_kv = add_zero_kv

        # flash attention

        self.flash = flash
        assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above'

        # determine efficient attention configs for cuda and cpu

        self.cpu_config = EfficientAttentionConfig(True, True, True)
        self.cuda_config = None

        if not torch.cuda.is_available() or not flash:
            return

        device_properties = torch.cuda.get_device_properties(torch.device('cuda'))

        major, minor = device_properties.major, device_properties.minor

        if (major, minor) == (8, 0):
            print_once('A100 GPU detected, using flash attention if input tensor is on cuda')
            self.cuda_config = EfficientAttentionConfig(True, False, False)
        elif (major, minor) == (9, 0):
            print_once('H100 GPU detected, using flash attention')
            self.cuda_config = EfficientAttentionConfig(True, False, False)
        else:
            print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda')
            self.cuda_config = EfficientAttentionConfig(False, True, True)

    def flash_attn(

        self,

        q, k, v,

        mask = None,

        attn_bias = None

    ):
        batch, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device

        # Recommended for multi-query single-key-value attention by Tri Dao
        # kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64])

        if k.ndim == 3:
            k = rearrange(k, 'b ... -> b 1 ...').expand_as(q)

        if v.ndim == 3:
            v = rearrange(v, 'b ... -> b 1 ...').expand_as(q)

        # handle scale - by default they scale by dim_head ** -0.5, but need to take care if using cosine sim attention

        if self.qk_norm:
            default_scale = q.shape[-1] ** -0.5
            q = q * (self.scale / default_scale)

        # Check if mask exists and expand to compatible shape
        # The mask is B L, so it would have to be expanded to B H N L

        causal = self.causal

        # in the case of kv caching with one token (q_len == 1), just turn off causal masking
        # in speculative decoding, this may go up to 5-6, so right aligned causal mask will be needed there

        if q_len == 1 and causal:
            causal = False

        # expand key padding mask

        if exists(mask):
            assert mask.ndim == 4
            mask = mask.expand(batch, heads, q_len, k_len)

        # handle kv cache - this should be bypassable in updated flash attention 2

        if k_len > q_len and causal:
            causal_mask = self.create_causal_mask(q_len, k_len, device = device)
            if not exists(mask):
                mask = ~causal_mask
            else:
                mask = mask & ~causal_mask
            causal = False

        # manually handle causal mask, if another mask was given

        row_is_entirely_masked = None

        if exists(mask) and causal:
            causal_mask = self.create_causal_mask(q_len, k_len, device = device)
            mask = mask & ~causal_mask

            # protect against an entire row being masked out

            row_is_entirely_masked = ~mask.any(dim = -1)
            mask[..., 0] = mask[..., 0] | row_is_entirely_masked

            causal = False

        # handle alibi positional bias
        # convert from bool to float

        if exists(attn_bias):
            attn_bias = rearrange(attn_bias, 'h i j -> 1 h i j').expand(batch, heads, -1, -1)

            # if mask given, the mask would already contain the causal mask from above logic
            # otherwise, if no mask given but still causal, mask out alibi positional bias to a large negative number

            mask_value = -torch.finfo(q.dtype).max

            if exists(mask):
                attn_bias = attn_bias.masked_fill(~mask, mask_value // 2)
            elif causal:
                causal_mask = self.create_causal_mask(q_len, k_len, device = device)
                attn_bias = attn_bias.masked_fill(causal_mask, mask_value // 2)
                causal = False

            # scaled_dot_product_attention handles attn_mask either as bool or additive bias
            # make it an additive bias here

            mask = attn_bias

        # Check if there is a compatible device for flash attention

        config = self.cuda_config if is_cuda else self.cpu_config

        # pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale
        
        # Legacy code...
        # with torch.backends.cuda.sdp_kernel(enable_math=True, enable_mem_efficient=True):

        # New SDP kernel code...
        # with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
        with sdpa_kernel([SDPBackend.MATH, SDPBackend.EFFICIENT_ATTENTION]):

            out = F.scaled_dot_product_attention(
                q, k, v,
                attn_mask = mask,
                dropout_p = self.dropout if self.training else 0., 
                is_causal = causal
            )

        # for a row that is entirely masked out, should zero out the output of that row token

        if exists(row_is_entirely_masked):
            out = out.masked_fill(row_is_entirely_masked[..., None], 0.)

        return out, Intermediates()

    def forward(

        self,

        q, k, v,

        mask = None,

        attn_bias = None,

        prev_attn = None

    ):
        """

        einstein notation

        b - batch

        h - heads

        n, i, j - sequence length (base sequence length, source, target)

        d - feature dimension

        """

        n, heads, kv_heads, device = q.shape[-2], q.shape[1], k.shape[1], q.device

        scale = default(self.scale, q.shape[-1] ** -0.5)

        causal = self.causal

        # handle kv cached decoding

        if n == 1 and causal:
            causal = False

        # handle grouped multi-query attention

        if kv_heads == 1:
            k, v = map(lambda t: rearrange(t, 'b 1 n d -> b n d'), (k, v))
        elif kv_heads < heads:
            k, v = map(lambda t: repeat(t, 'b kvh n d -> b (r kvh) n d', r = heads // kv_heads), (k, v))

        # handle zero kv, as means for allowing network to attend to nothing

        if self.add_zero_kv:
            k, v = map(lambda t: F.pad(t, (0, 0, 1, 0), value = 0.), (k, v))

            if exists(mask):
                mask = F.pad(mask, (1, 0), value = True)

            if exists(attn_bias):
                attn_bias = F.pad(attn_bias, (1, 0), value = 0.)

        if self.flash:
            assert not exists(prev_attn), 'residual attention not compatible with flash attention'
            return self.flash_attn(q, k, v, mask = mask, attn_bias = attn_bias)

        kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d'

        dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale

        if exists(prev_attn):
            dots = dots + prev_attn

        qk_similarities = dots.clone()

        if self.talking_heads:
            dots = self.pre_softmax_talking_heads(dots)

        if exists(attn_bias):
            dots = dots + attn_bias

        i, j, dtype = *dots.shape[-2:], dots.dtype

        mask_value = -torch.finfo(dots.dtype).max

        if exists(self.sparse_topk) and self.sparse_topk < j:
            top_values, _ = dots.topk(self.sparse_topk, dim = -1)
            sparse_topk_mask = dots < top_values[..., -1:]
            mask = (mask & sparse_topk_mask) if exists(mask) else sparse_topk_mask

        if exists(mask):
            dots = dots.masked_fill(~mask, mask_value)

        if causal:
            causal_mask = self.create_causal_mask(i, j, device = device)
            dots = dots.masked_fill(causal_mask, mask_value)

        pre_softmax_attn = dots.clone()

        attn = self.attn_fn(dots, dim = -1)
        attn = attn.type(dtype)

        post_softmax_attn = attn.clone()

        attn = self.attn_dropout(attn)

        if self.talking_heads:
            attn = self.post_softmax_talking_heads(attn)

        out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v)

        intermediates = Intermediates(
            qk_similarities = qk_similarities,
            pre_softmax_attn = pre_softmax_attn,
            post_softmax_attn = post_softmax_attn
        )

        return out, intermediates

#===================================================================================================================

from math import ceil, log
from typing import Optional, Union, Tuple, Callable

import torch
from torch import nn, Tensor
from torch.nn import Module
import torch.nn.functional as F

from einops import rearrange, pack, unpack

def exists(val):
    return val is not None

def default(val, d):
    return val if exists(val) else d

def identity(t, *args, **kwargs):
    return t

def cast_tuple(t, length = 1):
    return t if isinstance(t, tuple) else (t,) * length

def eval_decorator(fn):
    def inner(self, *args, **kwargs):
        was_training = self.training
        self.eval()
        out = fn(self, *args, **kwargs)
        self.train(was_training)
        return out
    return inner

# for variable lengthed prefixes

def align_right(t, lens, pad_id = 0):
    batch, seq_len, device, dtype = *t.shape, t.device, t.dtype

    assert lens.ndim == 1 and lens.shape[0] == batch
    assert lens.amax() <= seq_len

    pad_lens = seq_len - lens
    max_pad_len = pad_lens.amax()

    batch_arange = torch.arange(batch, device = device, dtype = torch.long)[..., None]
    prompt_len_arange = torch.arange(seq_len, device = device, dtype = torch.long)

    t = F.pad(t, (max_pad_len, 0), value = 0)
    offset = max_pad_len - pad_lens

    aligned = t[batch_arange, prompt_len_arange + offset[..., None]]
    return aligned

# nucleus

def top_p(logits, thres = 0.9):
    sorted_logits, sorted_indices = torch.sort(logits, descending = True)
    cum_probs = torch.cumsum(F.softmax(sorted_logits, dim = -1), dim = -1)

    sorted_indices_to_remove = cum_probs > thres
    sorted_indices_to_remove = F.pad(sorted_indices_to_remove, (1, -1), value = False)

    sorted_logits[sorted_indices_to_remove] = float('-inf')
    return sorted_logits.scatter(1, sorted_indices, sorted_logits)

# topk

def top_k(logits, frac_num_tokens = 0.1, k = None):
    num_tokens = logits.shape[-1]

    k = default(k, ceil(frac_num_tokens * num_tokens))
    k = min(k, num_tokens)

    val, ind = torch.topk(logits, k)
    probs = torch.full_like(logits, float('-inf'))
    probs.scatter_(1, ind, val)
    return probs

# top_a

def top_a(logits, min_p_pow = 2.0, min_p_ratio = 0.02):
    probs = F.softmax(logits, dim = -1)
    max_probs = torch.amax(probs, dim = -1, keepdim = True)
    limit = torch.pow(max_probs, min_p_pow) * min_p_ratio
    return torch.where(probs < limit, float('-inf'), logits)

# contrastive decoding function

def contrastive_decode_fn(

    expert_logits,

    amateur_logits,

    alpha = 0.1,

    beta = 0.5

):
    """

    Appendix A Algorithm 2

    https://arxiv.org/abs/2309.09117

    """

    cutoff = log(alpha) + expert_logits.amax(dim = -1, keepdim = True)
    diffs = (1 + beta) * expert_logits - beta * amateur_logits
    contrastive_decode_logits = diffs.masked_fill(expert_logits < cutoff, -torch.finfo(expert_logits.dtype).max)
    return contrastive_decode_logits

# autoregressive wrapper class

class AutoregressiveWrapper(Module):
    def __init__(

        self,

        net,

        ignore_index = -100,

        pad_value = 0,

        mask_prob = 0.,

        add_attn_z_loss = False

    ):
        super().__init__()
        self.pad_value = pad_value
        self.ignore_index = ignore_index

        self.net = net
        self.max_seq_len = net.max_seq_len

        # paper shows masking (MLM) in conjunction with autoregressive decoder-only training leads to big improvements https://arxiv.org/abs/2210.13432
        assert mask_prob < 1.
        self.mask_prob = mask_prob

        # whether to add router z-loss
        self.add_attn_z_loss = add_attn_z_loss

    @torch.no_grad()
    @eval_decorator
    def generate(

        self,

        prompts,

        seq_len,

        eos_token = None,

        temperature = 1.,

        prompt_lens: Optional[Tensor] = None,

        filter_logits_fn: Callable = top_k,

        restrict_to_max_seq_len = True,

        amateur_model: Optional[Union[Module, Tuple[Module]]] = None,

        filter_kwargs: dict = dict(),

        contrastive_decode_kwargs: Union[dict, Tuple[dict]] = dict(

            beta = 0.5,

            alpha = 0.1

        ),

        cache_kv = True,

        verbose=True,

        return_prime=False,

        **kwargs

    ):
        max_seq_len, device = self.max_seq_len, prompts.device

        prompts, ps = pack([prompts], '* n')

        b, t = prompts.shape

        # handle variable lengthed prompts (prefixes)

        seq_start_pos = None
        if exists(prompt_lens):
            prompts = align_right(prompts, prompt_lens, pad_id = self.pad_value)
            seq_start_pos = t - prompt_lens

        # output from which sampled tokens appended to

        out = prompts

        if verbose:
          print("Generating sequence of max length:", seq_len)

        # kv caches

        cache = None

        # if doing contrastive decoding, turn off filter automatically

        if exists(amateur_model):
            amateur_model = cast_tuple(amateur_model)
            contrastive_decode_kwargs = cast_tuple(contrastive_decode_kwargs)

            assert len(amateur_model) == len(contrastive_decode_kwargs)

            amateur_caches = [None] * len(amateur_model)
            filter_logits_fn = identity

            for i, module in enumerate(amateur_model):
                if isinstance(module, AutoregressiveWrapper):
                    amateur_model[i] = module.net

                module.eval()

        # sampling up to seq_len

        for sl in range(seq_len):

            if restrict_to_max_seq_len:
                x = out[:, -max_seq_len:]

                if exists(cache):
                    for inter in cache.attn_intermediates:
                        inter.cached_kv = [t[..., -(max_seq_len - 1):, :] for t in inter.cached_kv]

            logits, new_cache = self.net(
                x,
                return_intermediates = True,
                cache = cache,
                seq_start_pos = seq_start_pos,
                **kwargs
            )

            if cache_kv and self.net.can_cache_kv:
                cache = new_cache

            logits = logits[:, -1]

            # handle contrastive decoding, Li et al.
            # https://arxiv.org/abs/2210.15097

            if exists(amateur_model):
                for i, (amateur, amateur_cache, amateur_contrastive_decode_kwargs) in enumerate(zip(amateur_model, amateur_caches, contrastive_decode_kwargs)):
                    amateur_logits, next_amateur_cache = amateur(
                        x,
                        return_intermediates = True,
                        cache = amateur_cache,
                        seq_start_pos = seq_start_pos,
                        **kwargs
                    )

                    amateur_logits = amateur_logits[:, -1]

                    assert amateur_logits.shape == logits.shape, 'logits dimension are not the same between amateur and expert model'
                    logits = contrastive_decode_fn(logits, amateur_logits, **amateur_contrastive_decode_kwargs)

                    if cache_kv and amateur.can_cache_kv:
                        amateur_caches[i] = next_amateur_cache

            # filter by top_k, top_p (nucleus), top_a, or custom

            filtered_logits = filter_logits_fn(logits, **filter_kwargs)

            probs = F.softmax(filtered_logits / temperature, dim=-1)

            sample = torch.multinomial(probs, 1)

            out = torch.cat((out, sample), dim=-1)

            if verbose:
              if sl % 32 == 0:
                print(sl, '/', seq_len)

            if exists(eos_token):
                is_eos_tokens = (out == eos_token)

                if is_eos_tokens.any(dim = -1).all():
                    # mask out everything after the eos tokens
                    shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1))
                    mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1
                    out = out.masked_fill(mask, self.pad_value)

                    if verbose: 
                      print('Model called the end of sequence at:', sl, '/', seq_len)

                    break

        if return_prime:
          return out[:, :]
        
        else:
          return out[:, t:]

        # out, = unpack(out, ps, '* n')

        # return out

    def compute_accuracy(self, logits, labels): 
        out = torch.argmax(logits, dim=-1) 
        out = out.flatten() 
        labels = labels.flatten() 

        mask = (labels != self.ignore_index) # can also be self.pad_value (your choice)
        out = out[mask] 
        labels = labels[mask] 

        num_right = (out == labels)
        num_right = torch.sum(num_right).type(torch.float32)

        acc = num_right / len(labels) 
        return acc

    def forward(self, x, **kwargs):
        seq, ignore_index, add_attn_z_loss = x.shape[1], self.ignore_index, self.add_attn_z_loss

        inp, target = x[:, :-1], x[:, 1:]
        inp = torch.where(inp == ignore_index, self.pad_value, inp)

        if self.mask_prob > 0.:
            rand = torch.randn(inp.shape, device = x.device)
            rand[:, 0] = -torch.finfo(rand.dtype).max # first token should not be masked out
            num_mask = min(int(seq * self.mask_prob), seq - 1)
            indices = rand.topk(num_mask, dim = -1).indices
            mask = ~torch.zeros_like(inp).scatter(1, indices, 1.).bool()
            kwargs.update(self_attn_kv_mask = mask)

        logits, cache = self.net(
            inp,
            return_intermediates = True,
            return_attn_z_loss = add_attn_z_loss,
            **kwargs
        )

        acc = self.compute_accuracy(logits, target)

        loss = F.cross_entropy(
            rearrange(logits, 'b n c -> b c n'),
            target,
            ignore_index = ignore_index
        )

        if add_attn_z_loss:
            loss = loss + cache.attn_z_loss

        return loss, acc, cache

#===============================================================================

import math
from random import random

import torch
from torch import nn, einsum, Tensor
import torch.nn.functional as F

from functools import partial, wraps
from inspect import isfunction
from collections import namedtuple
from dataclasses import dataclass
from typing import List, Callable, Optional

from einops import rearrange, repeat, reduce, pack, unpack
from einops.layers.torch import Rearrange

# constants

DEFAULT_DIM_HEAD = 64

@dataclass
class LayerIntermediates:
    hiddens: Optional[List[Tensor]] = None
    attn_intermediates: Optional[List[Intermediates]] = None
    layer_hiddens: Optional[List[Tensor]] = None
    attn_z_loss: Optional[Tensor] = None
    mems: Optional[Tensor] = None

# helpers

def exists(val):
    return val is not None

def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d

def cast_tuple(val, depth):
    return val if isinstance(val, tuple) else (val,) * depth

def divisible_by(num, den):
    return (num % den) == 0

def maybe(fn):
    @wraps(fn)
    def inner(x, *args, **kwargs):
        if not exists(x):
            return x
        return fn(x, *args, **kwargs)
    return inner

class always():
    def __init__(self, val):
        self.val = val
    def __call__(self, *args, **kwargs):
        return self.val

class not_equals():
    def __init__(self, val):
        self.val = val
    def __call__(self, x, *args, **kwargs):
        return x != self.val

class equals():
    def __init__(self, val):
        self.val = val
    def __call__(self, x, *args, **kwargs):
        return x == self.val

def Sequential(*modules):
    return nn.Sequential(*filter(exists, modules))

# tensor helpers

def max_neg_value(tensor):
    return -torch.finfo(tensor.dtype).max

def l2norm(t, groups = 1):
    t = rearrange(t, '... (g d) -> ... g d', g = groups)
    t = F.normalize(t, p = 2, dim = -1)
    return rearrange(t, '... g d -> ... (g d)')

def pad_at_dim(t, pad, dim = -1, value = 0.):
    dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1)
    zeros = ((0, 0) * dims_from_right)
    return F.pad(t, (*zeros, *pad), value = value)

def or_reduce(masks):
    head, *body = masks
    for rest in body:
        head = head | rest
    return head

# auxiliary loss helpers

def calc_z_loss(

    pre_softmax_attns: List[Tensor],

    mask = None,

    weight = 1.

):
    # the same loss applied to the mixture of experts router logits in https://arxiv.org/abs/2202.08906
    # in the paper, in a tiny footnote, they mention using it on attention logits with stabilizing effects
    # also used in PaLM as one of the measures

    lse = 0.

    for attn in pre_softmax_attns:
        lse = lse + attn.logsumexp(dim = -1)

    loss = torch.square(lse)
    loss = reduce(loss, 'b h n -> b n', 'sum')

    if not exists(mask):
        return loss.mean() * weight

    loss = loss[mask].sum() / mask.sum().clamp(min = 1e-5)
    return loss * weight

# init helpers

def init_zero_(layer):
    nn.init.constant_(layer.weight, 0.)
    if exists(layer.bias):
        nn.init.constant_(layer.bias, 0.)

# keyword argument helpers

def pick_and_pop(keys, d):
    values = list(map(lambda key: d.pop(key), keys))
    return dict(zip(keys, values))

def group_dict_by_key(cond, d):
    return_val = [dict(),dict()]
    for key in d.keys():
        match = bool(cond(key))
        ind = int(not match)
        return_val[ind][key] = d[key]
    return (*return_val,)

def string_begins_with(prefix, str):
    return str.startswith(prefix)

def group_by_key_prefix(prefix, d):
    return group_dict_by_key(partial(string_begins_with, prefix), d)

def groupby_prefix_and_trim(prefix, d):
    kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
    kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
    return kwargs_without_prefix, kwargs

# structured dropout, more effective than traditional attention dropouts

def dropout_seq(seq, mask, dropout):
    b, n, *_, device = *seq.shape, seq.device
    logits = torch.randn(b, n, device = device)

    if exists(mask):
        mask_value = max_neg_value(logits)
        logits = logits.masked_fill(~mask, mask_value)

    keep_prob = 1. - dropout
    num_keep = max(1,  int(keep_prob * n))
    keep_indices = logits.topk(num_keep, dim = 1).indices

    batch_indices = torch.arange(b, device = device)
    batch_indices = rearrange(batch_indices, 'b -> b 1')

    seq = seq[batch_indices, keep_indices]

    if exists(mask):
        seq_counts = mask.sum(dim = -1)
        seq_keep_counts = torch.ceil(seq_counts * keep_prob).int()
        keep_mask = torch.arange(num_keep, device = device) < rearrange(seq_keep_counts, 'b -> b 1')

        mask = mask[batch_indices, keep_indices] & keep_mask

    return seq, mask

# activations

class ReluSquared(nn.Module):
    def forward(self, x):
        return F.relu(x) ** 2

# embedding

class TokenEmbedding(nn.Module):
    def __init__(self, dim, num_tokens, l2norm_embed = False):
        super().__init__()
        self.l2norm_embed = l2norm_embed
        self.emb = nn.Embedding(num_tokens, dim)

    def forward(self, x):
        token_emb = self.emb(x)
        return l2norm(token_emb) if self.l2norm_embed else token_emb

# positional embeddings

class AbsolutePositionalEmbedding(nn.Module):
    def __init__(self, dim, max_seq_len, l2norm_embed = False):
        super().__init__()
        self.scale = dim ** -0.5 if not l2norm_embed else 1.
        self.max_seq_len = max_seq_len
        self.l2norm_embed = l2norm_embed
        self.emb = nn.Embedding(max_seq_len, dim)

    def forward(self, x, pos = None, seq_start_pos = None):
        seq_len, device = x.shape[1], x.device
        assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'

        if not exists(pos):
            pos = torch.arange(seq_len, device = device)

        if exists(seq_start_pos):
            pos = (pos - seq_start_pos[..., None]).clamp(min = 0)

        pos_emb = self.emb(pos)
        pos_emb = pos_emb * self.scale
        return l2norm(pos_emb) if self.l2norm_embed else pos_emb

class ScaledSinusoidalEmbedding(nn.Module):
    def __init__(self, dim, theta = 10000):
        super().__init__()
        assert divisible_by(dim, 2)
        self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)

        half_dim = dim // 2
        freq_seq = torch.arange(half_dim).float() / half_dim
        inv_freq = theta ** -freq_seq
        self.register_buffer('inv_freq', inv_freq, persistent = False)

    def forward(self, x, pos = None, seq_start_pos = None):
        seq_len, device = x.shape[1], x.device

        if not exists(pos):
            pos = torch.arange(seq_len, device = device)

        if exists(seq_start_pos):
            pos = pos - seq_start_pos[..., None]

        emb = einsum('i, j -> i j', pos, self.inv_freq)
        emb = torch.cat((emb.sin(), emb.cos()), dim = -1)
        return emb * self.scale

class RelativePositionBias(nn.Module):
    def __init__(self, scale, causal = False, num_buckets = 32, max_distance = 128, heads = 8):
        super().__init__()
        self.scale = scale
        self.causal = causal
        self.num_buckets = num_buckets
        self.max_distance = max_distance
        self.relative_attention_bias = nn.Embedding(num_buckets, heads)

    @staticmethod
    def _relative_position_bucket(relative_position, causal = True, num_buckets = 32, max_distance = 128):
        ret = 0
        n = -relative_position
        if not causal:
            num_buckets //= 2
            ret += (n < 0).long() * num_buckets
            n = torch.abs(n)
        else:
            n = torch.max(n, torch.zeros_like(n))

        max_exact = num_buckets // 2
        is_small = n < max_exact

        val_if_large = max_exact + (
            torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
        ).long()
        val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))

        ret += torch.where(is_small, n, val_if_large)
        return ret

    @property
    def device(self):
        return next(self.parameters()).device

    def forward(self, i, j):
        device = self.device
        q_pos = torch.arange(j - i, j, dtype = torch.long, device = device)
        k_pos = torch.arange(j, dtype = torch.long, device = device)
        rel_pos = k_pos[None, :] - q_pos[:, None]
        rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance)
        values = self.relative_attention_bias(rp_bucket)
        bias = rearrange(values, 'i j h -> h i j')
        return bias * self.scale

class DynamicPositionBias(nn.Module):
    def __init__(self, dim, *, heads, depth, log_distance = False, norm = False):
        super().__init__()
        assert depth >= 1, 'depth for dynamic position bias MLP must be greater or equal to 1'
        self.log_distance = log_distance

        self.mlp = nn.ModuleList([])

        self.mlp.append(Sequential(
            nn.Linear(1, dim),
            nn.LayerNorm(dim) if norm else None,
            nn.SiLU()
        ))

        for _ in range(depth - 1):
            self.mlp.append(Sequential(
                nn.Linear(dim, dim),
                nn.LayerNorm(dim) if norm else None,
                nn.SiLU()
            ))

        self.mlp.append(nn.Linear(dim, heads))

    @property
    def device(self):
        return next(self.parameters()).device

    def forward(self, i, j):
        assert i == j
        n, device = j, self.device

        # get the (n x n) matrix of distances
        seq_arange = torch.arange(n, device = device)
        context_arange = torch.arange(n, device = device)
        indices = rearrange(seq_arange, 'i -> i 1') - rearrange(context_arange, 'j -> 1 j')
        indices += (n - 1)

        # input to continuous positions MLP
        pos = torch.arange(-n + 1, n, device = device).float()
        pos = rearrange(pos, '... -> ... 1')

        if self.log_distance:
            pos = torch.sign(pos) * torch.log(pos.abs() + 1)  # log of distance is sign(rel_pos) * log(abs(rel_pos) + 1)

        for layer in self.mlp:
            pos = layer(pos)

        # get position biases        
        bias = pos[indices]
        bias = rearrange(bias, 'i j h -> h i j')
        return bias

class AlibiPositionalBias(nn.Module):
    def __init__(self, heads, total_heads, **kwargs):
        super().__init__()
        self.heads = heads
        self.total_heads = total_heads

        slopes = Tensor(self._get_slopes(heads))
        slopes = rearrange(slopes, 'h -> h 1 1')
        self.register_buffer('slopes', slopes, persistent = False)
        self.register_buffer('bias', None, persistent = False)
    
    def get_bias(self, i, j, device):
        i_arange = torch.arange(j - i, j, device = device)
        j_arange = torch.arange(j, device = device)
        bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1'))
        return bias

    @staticmethod
    def _get_slopes(heads):
        def get_slopes_power_of_2(n):
            start = (2**(-2**-(math.log2(n)-3)))
            ratio = start
            return [start*ratio**i for i in range(n)]

        if math.log2(heads).is_integer():
            return get_slopes_power_of_2(heads)

        closest_power_of_2 = 2 ** math.floor(math.log2(heads))
        return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2]

    @property
    def device(self):
        return next(self.buffers()).device

    def forward(self, i, j):
        h, device = self.total_heads, self.device

        if exists(self.bias) and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i:
            return self.bias[..., -i:, -j:]

        bias = self.get_bias(i, j, device)
        bias = bias * self.slopes

        num_heads_unalibied = h - bias.shape[0]
        bias = pad_at_dim(bias, (0, num_heads_unalibied), dim = 0)
        self.register_buffer('bias', bias, persistent = False)

        return self.bias

class RotaryEmbedding(nn.Module):
    def __init__(

        self,

        dim,

        use_xpos = False,

        scale_base = 512,

        interpolation_factor = 1.,

        base = 10000,

        base_rescale_factor = 1.

    ):
        super().__init__()
        # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
        # has some connection to NTK literature
        # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
        base *= base_rescale_factor ** (dim / (dim - 2))

        inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer('inv_freq', inv_freq)

        assert interpolation_factor >= 1.
        self.interpolation_factor = interpolation_factor

        if not use_xpos:
            self.register_buffer('scale', None)
            return

        scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)

        self.scale_base = scale_base
        self.register_buffer('scale', scale)

    def forward(self, seq_len):
        device = self.inv_freq.device
        t = torch.arange(seq_len, device = device).type_as(self.inv_freq)

        t = t / self.interpolation_factor

        freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
        freqs = torch.cat((freqs, freqs), dim = -1)

        if not exists(self.scale):
            return freqs, 1.

        power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base
        scale = self.scale ** rearrange(power, 'n -> n 1')
        scale = torch.cat((scale, scale), dim = -1)

        return freqs, scale


def rotate_half(x):
    x = rearrange(x, '... (j d) -> ... j d', j = 2)
    x1, x2 = x.unbind(dim = -2)
    return torch.cat((-x2, x1), dim = -1)

def apply_rotary_pos_emb(t, freqs, scale = 1):
    rot_dim, seq_len = freqs.shape[-1], t.shape[-2]
    freqs = freqs[-seq_len:, :]

    if t.ndim == 4 and freqs.ndim == 3:
        freqs = rearrange(freqs, 'b n d -> b 1 n d')

    # partial rotary embeddings, Wang et al. GPT-J
    t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
    t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
    return torch.cat((t, t_unrotated), dim = -1)

# norms

class Scale(nn.Module):
    def __init__(self, value, fn):
        super().__init__()
        self.value = value
        self.fn = fn

    def forward(self, x, **kwargs):
        out = self.fn(x, **kwargs)
        scale_fn = lambda t: t * self.value

        if not isinstance(out, tuple):
            return scale_fn(out)

        return (scale_fn(out[0]), *out[1:])

class ScaleNorm(nn.Module):
    def __init__(self, dim, eps = 1e-5):
        super().__init__()
        self.eps = eps
        self.g = nn.Parameter(torch.ones(1) * (dim ** -0.5))

    def forward(self, x):
        norm = torch.norm(x, dim = -1, keepdim = True)
        return x / norm.clamp(min = self.eps) * self.g

class RMSNorm(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.scale = dim ** 0.5
        self.g = nn.Parameter(torch.ones(dim))

    def forward(self, x):
        return F.normalize(x, dim = -1) * self.scale * self.g

class SimpleRMSNorm(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.scale = dim ** 0.5

    def forward(self, x):
        return F.normalize(x, dim = -1) * self.scale

# residual and residual gates

class Residual(nn.Module):
    def __init__(self, dim, scale_residual = False, scale_residual_constant = 1.):
        super().__init__()
        self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
        self.scale_residual_constant = scale_residual_constant

    def forward(self, x, residual):
        if exists(self.residual_scale):
            residual = residual * self.residual_scale

        if self.scale_residual_constant != 1:
            residual = residual * self.scale_residual_constant

        return x + residual

class GRUGating(nn.Module):
    def __init__(self, dim, scale_residual = False, **kwargs):
        super().__init__()
        self.gru = nn.GRUCell(dim, dim)
        self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None

    def forward(self, x, residual):
        if exists(self.residual_scale):
            residual = residual * self.residual_scale

        gated_output = self.gru(
            rearrange(x, 'b n d -> (b n) d'),
            rearrange(residual, 'b n d -> (b n) d')
        )

        return gated_output.reshape_as(x)

# token shifting

def shift(t, amount, mask = None):
    if amount == 0:
        return t
    else:
        amount = min(amount, t.shape[1])

    if exists(mask):
        t = t.masked_fill(~mask[..., None], 0.)

    return pad_at_dim(t, (amount, -amount), dim = - 2, value = 0.)

class ShiftTokens(nn.Module):
    def __init__(self, shifts, fn):
        super().__init__()
        self.fn = fn
        self.shifts = tuple(shifts)

    def forward(self, x, **kwargs):
        mask = kwargs.get('mask', None)
        shifts = self.shifts
        segments = len(shifts)
        feats_per_shift = x.shape[-1] // segments
        splitted = x.split(feats_per_shift, dim = -1)
        segments_to_shift, rest = splitted[:segments], splitted[segments:]
        segments_to_shift = list(map(lambda args: shift(*args, mask = mask), zip(segments_to_shift, shifts)))
        x = torch.cat((*segments_to_shift, *rest), dim = -1)
        return self.fn(x, **kwargs)

# feedforward

class GLU(nn.Module):
    def __init__(

        self,

        dim_in,

        dim_out,

        activation: Callable,

        mult_bias = False

    ):
        super().__init__()
        self.act = activation
        self.proj = nn.Linear(dim_in, dim_out * 2)
        self.mult_bias = nn.Parameter(torch.ones(dim_out)) if mult_bias else 1.

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim = -1)
        return x * self.act(gate) * self.mult_bias

class FeedForward(nn.Module):
    def __init__(

        self,

        dim,

        dim_out = None,

        mult = 4,

        glu = False,

        glu_mult_bias = False,

        swish = False,

        relu_squared = False,

        post_act_ln = False,

        dropout = 0.,

        no_bias = False,

        zero_init_output = False

    ):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)

        if relu_squared:
            activation = ReluSquared()
        elif swish:
            activation = nn.SiLU()
        else:
            activation = nn.GELU()

        if glu:
            project_in = GLU(dim, inner_dim, activation, mult_bias = glu_mult_bias)
        else:
            project_in = nn.Sequential(
                nn.Linear(dim, inner_dim, bias = not no_bias),
                activation
            )

        self.ff = Sequential(
            project_in,
            nn.LayerNorm(inner_dim) if post_act_ln else None,
            nn.Dropout(dropout),
            nn.Linear(inner_dim, dim_out, bias = not no_bias)
        )

        # init last linear layer to 0
        if zero_init_output:
            init_zero_(self.ff[-1])

    def forward(self, x):
        return self.ff(x)

# attention. it is all we need

class Attention(nn.Module):
    def __init__(

        self,

        dim,

        dim_head = DEFAULT_DIM_HEAD,

        heads = 8,

        causal = False,

        flash = False,

        talking_heads = False,

        head_scale = False,

        sparse_topk = None,

        num_mem_kv = 0,

        dropout = 0.,

        on_attn = False,

        gate_value_heads = False,

        gate_values = False,

        zero_init_output = False,

        max_attend_past = None,

        qk_norm = False,

        qk_norm_groups = 1,

        qk_norm_scale = 10,

        qk_norm_dim_scale = False,

        one_kv_head = False,

        kv_heads = None,

        shared_kv = False,

        value_dim_head = None,

        tensor_product = False,      # https://arxiv.org/abs/2208.06061

        add_zero_kv = False,         # same as add_zero_attn in pytorch

        rotary_embed_values = False,

        onnxable = False

    ):
        super().__init__()
        self.scale = dim_head ** -0.5

        self.heads = heads
        self.causal = causal
        self.max_attend_past = max_attend_past

        assert not (exists(kv_heads) and one_kv_head), 'either attn_one_kv_head is set to True (in which case kv_heads is set to 1), or attn_kv_heads is set, but not both'

        value_dim_head = default(value_dim_head, dim_head)
        kv_heads = default(kv_heads, heads)

        kv_heads = 1 if one_kv_head else kv_heads
        assert divisible_by(heads, kv_heads)

        self.kv_heads = kv_heads

        q_dim = dim_head * heads
        k_dim = dim_head * kv_heads
        v_dim = value_dim_head * kv_heads
        out_dim = value_dim_head * heads

        self.to_q = nn.Linear(dim, q_dim, bias = False)
        self.to_k = nn.Linear(dim, k_dim, bias = False)

        # shared key / values, for further memory savings during inference
        assert not (shared_kv and value_dim_head != dim_head), 'key and value head dimensions must be equal for shared key / values'
        self.to_v = nn.Linear(dim, v_dim, bias = False) if not shared_kv else None

        # relations projection from tp-attention
        self.to_r = nn.Linear(dim, v_dim, bias = False) if tensor_product else None

        # add GLU gating for aggregated values, from alphafold2
        self.to_v_gate = None
        if gate_values:
            self.to_v_gate = nn.Linear(dim, out_dim)
            nn.init.constant_(self.to_v_gate.weight, 0)
            nn.init.constant_(self.to_v_gate.bias, 10)

        # add per head gating of the output values, from 'Attend to nothing' paper
        self.to_v_head_gate = None
        if gate_value_heads:
            self.to_v_head_gate = nn.Linear(dim, heads)
            nn.init.constant_(self.to_v_head_gate.weight, 0)
            nn.init.constant_(self.to_v_head_gate.bias, 10)

        # cosine sim attention
        self.qk_norm = qk_norm
        self.qk_norm_groups = qk_norm_groups
        self.qk_norm_scale = qk_norm_scale

        # whether to use the rmsnorm (equivalent to cosine sim attention when scale is equal to 1) - https://arxiv.org/abs/2302.05442
        self.qk_norm_dim_scale = qk_norm_dim_scale

        self.qk_norm_q_scale = self.qk_norm_k_scale = 1
        if qk_norm and qk_norm_dim_scale:
            self.qk_norm_q_scale = nn.Parameter(torch.ones(heads, 1, dim_head))
            self.qk_norm_k_scale = nn.Parameter(torch.ones(heads, 1, dim_head))

        assert (not qk_norm) or divisible_by(dim_head, qk_norm_groups), 'dimension per attention head must be divisible by the qk norm groups'
        assert not (qk_norm and (dim_head // qk_norm_groups) <= 2), 'the group dimension may be too small (2 was too small in my tests, but 4 still works, surprisingly)'

        # attend class - includes core attention algorithm + talking heads

        self.attend = Attend(
            heads = heads,
            causal = causal,
            talking_heads = talking_heads,
            dropout = dropout,
            sparse_topk = sparse_topk,
            qk_norm = qk_norm,
            scale = qk_norm_scale if qk_norm else self.scale,
            add_zero_kv = add_zero_kv,
            flash = flash,
            onnxable = onnxable
        )

        # head scaling
        self.head_scale = head_scale
        if head_scale:
            self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1))

        # explicit topk sparse attention
        self.sparse_topk = sparse_topk

        # add memory key / values
        self.num_mem_kv = num_mem_kv
        if num_mem_kv > 0:
            self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
            self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))

        # attention on attention
        self.attn_on_attn = on_attn
        self.to_out = nn.Sequential(nn.Linear(out_dim, dim * 2, bias = False), nn.GLU()) if on_attn else nn.Linear(out_dim, dim, bias = False)

        # whether to rotate positions into values, for absolute positions in addition to relative
        self.rotary_embed_values = rotary_embed_values

        # init output projection 0
        if zero_init_output:
            init_zero_(self.to_out)

    def forward(

        self,

        x,

        context = None,

        mask = None,

        context_mask = None,

        attn_mask = None,

        rel_pos = None,

        rotary_pos_emb = None,

        prev_attn = None,

        mem = None,

        return_intermediates = False,

        cache: Optional[Intermediates] = None,

    ):
        b, n, _, h, kv_h, head_scale, device, has_context = *x.shape, self.heads, self.kv_heads, self.head_scale, x.device, exists(context)
        kv_input = default(context, x)

        q_input = x
        k_input = kv_input
        v_input = kv_input
        r_input = x

        if exists(mem):
            k_input, mem_packed_shape = pack([mem, k_input], 'b * d')
            v_input, _ = pack([mem, v_input], 'b * d')

        q = self.to_q(q_input)
        k = self.to_k(k_input)
        v = self.to_v(v_input) if exists(self.to_v) else k
        r = self.to_r(r_input) if exists(self.to_r) else None

        q = rearrange(q, 'b n (h d) -> b h n d', h = h)

        k, v, r = map(lambda t: maybe(rearrange)(t, 'b n (h d) -> b h n d', h = kv_h), (k, v, r))

        if exists(cache) and not has_context:
            ck, cv = cache.cached_kv

            if exists(mem):
                mk, k = unpack(k, mem_packed_shape, 'b h * d')
                mv, v = unpack(v, mem_packed_shape, 'b h * d')

            k = torch.cat((ck, k), dim = -2)
            v = torch.cat((cv, v), dim = -2)

            if exists(mem):
                k = torch.cat((mk, k), dim = -2)
                v = torch.cat((mv, v), dim = -2)

        if return_intermediates:
            mem_len = mem.shape[-2] if exists(mem) else 0
            cached_kv = (k[..., mem_len:, :], v[..., mem_len:, :])

        if self.qk_norm:
            qk_l2norm = partial(l2norm, groups = self.qk_norm_groups)
            q, k = map(qk_l2norm, (q, k))
            scale = self.qk_norm_scale

            q = q * self.qk_norm_q_scale
            k = k * self.qk_norm_k_scale

        if exists(rotary_pos_emb) and not has_context:
            freqs, xpos_scale = rotary_pos_emb
            q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if exists(xpos_scale) else (1., 1.)

            q = apply_rotary_pos_emb(q, freqs, q_xpos_scale)
            k = apply_rotary_pos_emb(k, freqs, k_xpos_scale)

            if self.rotary_embed_values:
                v = apply_rotary_pos_emb(v, freqs, k_xpos_scale)

        input_mask = context_mask

        if not exists(input_mask) and not has_context:
            input_mask = mask

        if self.num_mem_kv > 0:
            mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b = b), (self.mem_k, self.mem_v))

            if self.qk_norm:
                mem_k = l2norm(mem_k)
                mem_k = mem_k * self.qk_norm_k_scale

            k = torch.cat((mem_k, k), dim = -2)
            v = torch.cat((mem_v, v), dim = -2)

            if exists(input_mask):
                input_mask = pad_at_dim(input_mask, (self.num_mem_kv, 0), dim = -1, value = True)

        i, j = map(lambda t: t.shape[-2], (q, k))

        # determine masking

        mask_value = max_neg_value(q)
        masks = []
        final_attn_mask = None

        if exists(input_mask):
            input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
            masks.append(~input_mask)

        if exists(attn_mask):
            assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4'
            if attn_mask.ndim == 2:
                attn_mask = rearrange(attn_mask, 'i j -> 1 1 i j')
            elif attn_mask.ndim == 3:
                attn_mask = rearrange(attn_mask, 'h i j -> 1 h i j')
            masks.append(~attn_mask)

        if exists(self.max_attend_past):
            range_q = torch.arange(j - i, j, device = device)
            range_k = torch.arange(j, device = device)
            dist = rearrange(range_q, 'i -> 1 1 i 1') - rearrange(range_k, 'j -> 1 1 1 j')
            max_attend_past_mask = dist > self.max_attend_past
            masks.append(max_attend_past_mask)

        if len(masks) > 0:
            final_attn_mask = ~or_reduce(masks)

        # prepare relative positional bias, if needed

        attn_bias = None
        if exists(rel_pos):
            attn_bias = rel_pos(i, j)

        # attention is all we need

        out, intermediates = self.attend(
            q, k, v,
            mask = final_attn_mask,
            attn_bias = attn_bias,
            prev_attn = prev_attn
        )

        # https://arxiv.org/abs/2208.06061 proposes to add a residual for better gradients

        if exists(r):
            out = out * r + out

        # normformer scaling of heads

        if head_scale:
            out = out * self.head_scale_params

        # per head gating, from https://arxiv.org/abs/2306.12929

        if exists(self.to_v_head_gate):
            head_gate = self.to_v_head_gate(x)
            out = out * rearrange(head_gate, 'b n h -> b h n 1').sigmoid()

        # merge heads

        out = rearrange(out, 'b h n d -> b n (h d)')

        # alphafold2 styled gating of the values

        if exists(self.to_v_gate):
            gates = self.to_v_gate(x)
            out = out * gates.sigmoid()

        # combine the heads

        out = self.to_out(out)

        if exists(mask):
            mask = rearrange(mask, 'b n -> b n 1')
            out = out.masked_fill(~mask, 0.)

        if not return_intermediates:
            return out

        intermediates.cached_kv = cached_kv

        return out, intermediates

class AttentionLayers(nn.Module):
    def __init__(

        self,

        dim,

        depth,

        heads = 8,

        causal = False,

        cross_attend = False,

        only_cross = False,

        use_scalenorm = False,

        use_rmsnorm = False,

        use_simple_rmsnorm = False,

        alibi_pos_bias = False,

        alibi_num_heads = None,

        rel_pos_bias = False,

        rel_pos_num_buckets = 32,

        rel_pos_max_distance = 128,

        dynamic_pos_bias = False,

        dynamic_pos_bias_log_distance = False,

        dynamic_pos_bias_mlp_depth = 2,

        dynamic_pos_bias_norm = False,

        rotary_pos_emb = False,

        rotary_emb_dim = None,

        rotary_xpos = False,

        rotary_interpolation_factor = 1.,

        rotary_xpos_scale_base = 512,

        rotary_base_rescale_factor = 1.,

        custom_layers = None,

        sandwich_coef = None,

        par_ratio = None,

        weight_tie_layers = False,   # Albert - https://arxiv.org/abs/1909.11942

        layers_execute_order = None, # generalizes weight tying, can do arbitrary layer execution orders

        residual_attn = False,

        cross_residual_attn = False,

        macaron = False,

        pre_norm = True,

        pre_norm_has_final_norm = True,

        gate_residual = False,

        scale_residual = False,

        scale_residual_constant = 1.,

        shift_tokens = 0,

        sandwich_norm = False,

        resi_dual = False,

        resi_dual_scale = 1.,

        zero_init_branch_output = False,

        layer_dropout = 0.,

        cross_attn_tokens_dropout = 0.,

        **kwargs

    ):
        super().__init__()
        rotary_pos_emb = rotary_pos_emb or rotary_xpos

        ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
        attn_kwargs, kwargs = groupby_prefix_and_trim('attn_', kwargs)

        dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)

        self.dim = dim
        self.depth = depth
        self.causal = causal
        self.layers = nn.ModuleList([])

        self.has_pos_emb = rel_pos_bias or rotary_pos_emb

        rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32)

        assert not (rotary_xpos and not causal), 'rotary xpos is not compatible with bidirectional attention'
        self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim, use_xpos = rotary_xpos, scale_base = rotary_xpos_scale_base, interpolation_factor = rotary_interpolation_factor, base_rescale_factor = rotary_base_rescale_factor) if rotary_pos_emb else None

        assert not (alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both'
        assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'

        # relative positional bias

        flash_attn = attn_kwargs.get('flash', False)
        assert (int(rel_pos_bias) + int(dynamic_pos_bias) + int(alibi_pos_bias)) <= 1, 'you can only choose up to one of t5, alibi, or dynamic positional bias'

        self.rel_pos = None
        if rel_pos_bias:
            assert not flash_attn, 'flash attention not compatible with t5 relative positional bias'
            self.rel_pos = RelativePositionBias(scale = dim_head ** 0.5, causal = causal, heads = heads, num_buckets = rel_pos_num_buckets, max_distance = rel_pos_max_distance)
        elif dynamic_pos_bias:
            assert not flash_attn, 'flash attention not compatible with dynamic positional bias'
            self.rel_pos = DynamicPositionBias(dim = dim // 4, heads = heads, log_distance = dynamic_pos_bias_log_distance, depth = dynamic_pos_bias_mlp_depth, norm = dynamic_pos_bias_norm)
        elif alibi_pos_bias:
            alibi_num_heads = default(alibi_num_heads, heads)
            assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads'
            self.rel_pos = AlibiPositionalBias(heads = alibi_num_heads, total_heads = heads)

        assert (int(sandwich_norm) + int(resi_dual)) <= 1, 'either sandwich norm or resiDual is selected, but not both'
        assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm'

        if resi_dual:
            pre_norm = False

        self.pre_norm = pre_norm
        self.sandwich_norm = sandwich_norm

        self.resi_dual = resi_dual
        assert 0 < resi_dual_scale <= 1., 'resiDual prenorm residual must be scaled by a factor greater than 0 and less than or equal to 1.'
        self.resi_dual_scale = resi_dual_scale

        self.residual_attn = residual_attn
        self.cross_residual_attn = cross_residual_attn
        assert not (flash_attn and (residual_attn or cross_residual_attn)), 'flash attention is not compatible with residual attention'

        self.cross_attend = cross_attend

        assert (int(use_scalenorm) + int(use_rmsnorm) + int(use_simple_rmsnorm)) <= 1, 'you can only use either scalenorm, rmsnorm, or simple rmsnorm'

        if use_scalenorm:
            norm_class = ScaleNorm
        elif use_rmsnorm:
            norm_class = RMSNorm
        elif use_simple_rmsnorm:
            norm_class = SimpleRMSNorm
        else:
            norm_class = nn.LayerNorm

        norm_fn = partial(norm_class, dim)

        if cross_attend and not only_cross:
            default_block = ('a', 'c', 'f')
        elif cross_attend and only_cross:
            default_block = ('c', 'f')
        else:
            default_block = ('a', 'f')

        if macaron:
            default_block = ('f',) + default_block

        # zero init

        if zero_init_branch_output:
            attn_kwargs = {**attn_kwargs, 'zero_init_output':  True}
            ff_kwargs = {**ff_kwargs, 'zero_init_output':  True}

        # setup weight tying, which is a special case of `layer_execute_order`

        assert not (weight_tie_layers and any([*map(exists, (custom_layers, par_ratio, sandwich_coef))]))

        if weight_tie_layers:
            assert not exists(layers_execute_order)
            layers_execute_order = tuple(range(len(default_block))) * depth
            depth = 1

        # calculate layer block order

        if exists(custom_layers):
            layer_types = custom_layers
        elif exists(par_ratio):
            par_depth = depth * len(default_block)
            assert 1 < par_ratio <= par_depth, 'par ratio out of range'
            default_block = tuple(filter(not_equals('f'), default_block))
            par_attn  = par_depth // par_ratio
            depth_cut = par_depth * 2 // 3  # 2 / 3 attention layer cutoff suggested by PAR paper
            par_width = (depth_cut + depth_cut // par_attn) // par_attn
            assert len(default_block) <= par_width, 'default block is too large for par_ratio'
            par_block = default_block + ('f',) * (par_width - len(default_block))
            par_head = par_block * par_attn
            layer_types = par_head + ('f',) * (par_depth - len(par_head))
        elif exists(sandwich_coef):
            assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
            layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
        else:
            layer_types = default_block * depth

        self.layer_types = layer_types
        self.layers_execute_order = default(layers_execute_order, tuple(range(len(layer_types))))

        assert all([i < len(self.layer_types) for i in self.layers_execute_order])

        self.num_attn_layers = len(list(filter(equals('a'), layer_types)))

        # stochastic depth

        self.layer_dropouts = cast_tuple(layer_dropout, len(layer_types))

        # structured dropout for cross attending

        self.cross_attn_tokens_dropout = cross_attn_tokens_dropout

        # calculate token shifting

        shift_tokens = cast_tuple(shift_tokens, len(layer_types))

        # whether it has post norm

        self.final_norm = norm_fn() if pre_norm or resi_dual else nn.Identity()

        # iterate and construct layers

        for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)):
            is_last_layer = ind == (len(self.layer_types) - 1)

            if layer_type == 'a':
                layer = Attention(dim, heads = heads, causal = causal, **attn_kwargs)
            elif layer_type == 'c':
                layer = Attention(dim, heads = heads, **attn_kwargs)
            elif layer_type == 'f':
                layer = FeedForward(dim, **ff_kwargs)
                layer = layer if not macaron else Scale(0.5, layer)
            else:
                raise Exception(f'invalid layer type {layer_type}')

            if layer_shift_tokens > 0:
                shift_range_upper = layer_shift_tokens + 1
                shift_range_lower = -layer_shift_tokens if not causal else 0
                layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer)

            residual_fn = GRUGating if gate_residual else Residual
            residual = residual_fn(dim, scale_residual = scale_residual, scale_residual_constant = scale_residual_constant)

            pre_branch_norm = norm_fn() if pre_norm else None
            post_branch_norm = norm_fn() if sandwich_norm else None
            post_main_norm = norm_fn() if not pre_norm else None

            norms = nn.ModuleList([
                pre_branch_norm,
                post_branch_norm,
                post_main_norm
            ])

            self.layers.append(nn.ModuleList([
                norms,
                layer,
                residual
            ]))

    def forward(

        self,

        x,

        context = None,

        mask = None,

        context_mask = None,

        attn_mask = None,

        self_attn_kv_mask = None,

        mems = None,

        seq_start_pos: Optional[Tensor] = None,

        cache: Optional[LayerIntermediates] = None,

        cache_age = 1,

        return_hiddens = False

    ):
        assert not (self.cross_attend ^ exists(context)), 'context must be passed in if cross_attend is set to True'

        # initialize accums

        hiddens = []
        layer_hiddens = []
        intermediates = []

        prev_attn = None
        prev_cross_attn = None

        mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers

        # handle left padded sequences

        if exists(seq_start_pos):
            seq_arange = torch.arange(x.shape[-2], device = x.device, dtype = torch.long)
            left_pad_mask = seq_arange >= seq_start_pos[..., None]

            if exists(self_attn_kv_mask):
                self_attn_kv_mask = self_attn_kv_mask & left_pad_mask
            else:
                self_attn_kv_mask = left_pad_mask

        # rotary positions

        rotary_pos_emb = None

        if exists(self.rotary_pos_emb):
            max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + x.shape[1], mems)))
            rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length)

        # assume cached key / values

        attn_cache = []

        if exists(cache):
            assert not self.training and self.causal and not any([*map(exists, (mask, attn_mask))])

            if cache_age > 0:
                x = x[:, -cache_age:] # for spec decoding, may be greater than 1

            attn_cache = cache.attn_intermediates

        iter_attn_cache = iter(attn_cache)

        # outer residual - for resiDual paper

        outer_residual = x * self.resi_dual_scale

        # get layers to be executed

        layer_variables = (
            self.layer_types,
            self.layers,
            self.layer_dropouts
        )

        layer_variables = tuple(tuple(layer_variable[i] for i in self.layers_execute_order) for layer_variable in layer_variables)

        # go through the attention and feedforward layers

        for ind, (layer_type, (norm, block, residual_fn), layer_dropout) in enumerate(zip(*layer_variables)):
            is_last = ind == (len(self.layers) - 1)

            if self.training and layer_dropout > 0. and random() < layer_dropout:
                continue

            if layer_type == 'a':
                if return_hiddens:
                    hiddens.append(x)
                layer_mem = mems.pop(0) if mems else None

            if layer_type == 'c':
                if self.training and self.cross_attn_tokens_dropout > 0.:
                    context, context_mask = dropout_seq(context, context_mask, self.cross_attn_tokens_dropout)

            inner_residual = x

            if return_hiddens:
                layer_hiddens.append(x)

            pre_norm, post_branch_norm, post_main_norm = norm

            if exists(pre_norm):
                x = pre_norm(x)

            if layer_type == 'a':
                out, inter = block(x, mask = mask, context_mask = self_attn_kv_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, rotary_pos_emb = rotary_pos_emb, prev_attn = prev_attn, cache = next(iter_attn_cache, None), mem = layer_mem, return_intermediates = True)
            elif layer_type == 'c':
                out, inter = block(x, context = context, mask = mask, context_mask = context_mask, prev_attn = prev_cross_attn, cache = next(iter_attn_cache, None), return_intermediates = True)
            elif layer_type == 'f':
                out = block(x)

            if self.resi_dual:
                outer_residual = outer_residual + out * self.resi_dual_scale

            if exists(post_branch_norm):
                out = post_branch_norm(out)

            x = residual_fn(out, inner_residual)

            if layer_type in ('a', 'c') and return_hiddens:
                intermediates.append(inter)

            if layer_type == 'a' and self.residual_attn:
                prev_attn = inter.pre_softmax_attn
            elif layer_type == 'c' and self.cross_residual_attn:
                prev_cross_attn = inter.pre_softmax_attn

            if exists(post_main_norm):
                x = post_main_norm(x)

        if return_hiddens:
            layer_hiddens.append(x)

        if self.resi_dual:
            x = x + self.final_norm(outer_residual)
        else:
            x = self.final_norm(x)

        if not return_hiddens:
            return x

        intermediates = LayerIntermediates(
            hiddens = hiddens,
            attn_intermediates = intermediates,
            layer_hiddens = layer_hiddens
        )

        return x, intermediates

class Encoder(AttentionLayers):
    def __init__(self, **kwargs):
        assert 'causal' not in kwargs, 'cannot set causality on encoder'
        super().__init__(causal = False, **kwargs)

class Decoder(AttentionLayers):
    def __init__(self, **kwargs):
        assert 'causal' not in kwargs, 'cannot set causality on decoder'
        super().__init__(causal = True, **kwargs)

class CrossAttender(AttentionLayers):
    def __init__(self, **kwargs):
        super().__init__(cross_attend = True, only_cross = True, **kwargs)

class ViTransformerWrapper(nn.Module):
    def __init__(

        self,

        *,

        image_size,

        patch_size,

        attn_layers,

        channels = 3,

        num_classes = None,

        post_emb_norm = False,

        num_register_tokens = 0,

        emb_dropout = 0.

    ):
        super().__init__()
        assert isinstance(attn_layers, Encoder), 'attention layers must be an Encoder'
        assert divisible_by(image_size, patch_size), 'image dimensions must be divisible by the patch size'
        dim = attn_layers.dim
        num_patches = (image_size // patch_size) ** 2
        patch_dim = channels * patch_size ** 2

        self.patch_size = patch_size

        self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim))

        has_register_tokens = num_register_tokens > 0
        self.has_register_tokens = has_register_tokens

        if has_register_tokens:
            self.register_tokens = nn.Parameter(torch.randn(num_register_tokens, dim))

        self.patch_to_embedding = nn.Sequential(
            nn.LayerNorm(patch_dim),
            nn.Linear(patch_dim, dim),
            nn.LayerNorm(dim)
        )

        self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity()
        self.dropout = nn.Dropout(emb_dropout)

        self.attn_layers = attn_layers

        self.mlp_head = nn.Linear(dim, num_classes) if exists(num_classes) else nn.Identity()

    def forward(

        self,

        img,

        return_embeddings = False

    ):
        b, p = img.shape[0], self.patch_size

        x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
        x = self.patch_to_embedding(x)
        n = x.shape[1]

        x = x + self.pos_embedding[:, :n]

        x = self.post_emb_norm(x)
        x = self.dropout(x)

        if self.has_register_tokens:
            r = repeat(self.register_tokens, 'n d -> b n d', b = b)
            x, ps = pack((x, r), 'b * d')

        x = self.attn_layers(x)

        if self.has_register_tokens:
            x, _ = unpack(x, ps, 'b * d')

        if not exists(self.mlp_head) or return_embeddings:
            return x

        x = x.mean(dim = -2)
        return self.mlp_head(x)

class TransformerWrapper(nn.Module):
    def __init__(

        self,

        *,

        num_tokens,

        max_seq_len,

        attn_layers,

        emb_dim = None,

        max_mem_len = 0,

        shift_mem_down = 0,

        emb_dropout = 0.,

        post_emb_norm = False,

        num_memory_tokens = None,

        memory_tokens_interspersed_every = None,

        tie_embedding = False,

        logits_dim = None,

        use_abs_pos_emb = True,

        scaled_sinu_pos_emb = False,

        l2norm_embed = False,

        emb_frac_gradient = 1., # GLM-130B and Cogview successfully used this, set at 0.1

        attn_z_loss_weight = 1e-4,

    ):
        super().__init__()
        assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'

        dim = attn_layers.dim
        emb_dim = default(emb_dim, dim)
        self.emb_dim = emb_dim
        self.num_tokens = num_tokens

        self.max_seq_len = max_seq_len
        self.max_mem_len = max_mem_len
        self.shift_mem_down = shift_mem_down

        self.l2norm_embed = l2norm_embed
        self.token_emb = TokenEmbedding(emb_dim, num_tokens, l2norm_embed = l2norm_embed)

        if not (use_abs_pos_emb and not attn_layers.has_pos_emb):
            self.pos_emb = always(0)
        elif scaled_sinu_pos_emb:
            self.pos_emb = ScaledSinusoidalEmbedding(emb_dim)
        else:
            self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len, l2norm_embed = l2norm_embed)

        self.emb_frac_gradient = emb_frac_gradient # fraction of the gradient that should go to the embedding, https://arxiv.org/abs/2105.13290

        self.post_emb_norm = nn.LayerNorm(emb_dim) if post_emb_norm else nn.Identity()
        self.emb_dropout = nn.Dropout(emb_dropout)

        self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
        self.attn_layers = attn_layers

        self.init_()

        logits_dim = default(logits_dim, num_tokens)
        self.to_logits = nn.Linear(dim, logits_dim) if not tie_embedding else lambda t: t @ self.token_emb.emb.weight.t()

        # memory tokens (like [cls]) from Memory Transformers paper

        num_memory_tokens = default(num_memory_tokens, 0)
        self.num_memory_tokens = num_memory_tokens
        if num_memory_tokens > 0:
            self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))

        self.memory_tokens_interspersed_every = memory_tokens_interspersed_every

        # whether can do cached kv decoding

        self.can_cache_kv = self.num_memory_tokens == 0

    def init_(self):
        if self.l2norm_embed:
            nn.init.normal_(self.token_emb.emb.weight, std = 1e-5)
            if not isinstance(self.pos_emb, always):
                nn.init.normal_(self.pos_emb.emb.weight, std = 1e-5)
            return

        nn.init.kaiming_normal_(self.token_emb.emb.weight)

    def forward(

        self,

        x,

        return_embeddings = False,

        return_logits_and_embeddings = False,

        return_intermediates = False,

        mask = None,

        return_mems = False,

        return_attn = False,

        mems = None,

        pos = None,

        prepend_embeds = None,

        sum_embeds = None,

        return_attn_z_loss = False,

        attn_z_loss_weight = 1e-4,

        seq_start_pos = None,

        cache: Optional[LayerIntermediates] = None,

        **kwargs

    ):
        b, n, device, num_mems, has_memory_tokens, emb_frac_gradient = *x.shape, x.device, self.num_memory_tokens, self.num_memory_tokens > 0, self.emb_frac_gradient
        return_hiddens = return_mems | return_attn | return_intermediates | return_attn_z_loss

        # absolute positional embedding

        external_pos_emb = exists(pos) and pos.dtype != torch.long
        pos_emb = self.pos_emb(x, pos = pos, seq_start_pos = seq_start_pos) if not external_pos_emb else pos
        x = self.token_emb(x) + pos_emb

        # for summing embeddings passed externally - needs this for self-conditioning in non-autoregressive training

        if exists(sum_embeds):
            x = x + sum_embeds

        # post embedding norm, purportedly leads to greater stabilization

        x = self.post_emb_norm(x)

        # whether to append embeds, as in PaLI, for image embeddings

        if exists(prepend_embeds):
            prepend_seq, prepend_dim = prepend_embeds.shape[1:]
            assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as text model dimensions'

            x = torch.cat((prepend_embeds, x), dim = -2)

        # whether to reduce the gradient going to the embedding, from cogview paper, corroborated by GLM-130B model

        if emb_frac_gradient < 1:
            assert emb_frac_gradient > 0
            x = x * emb_frac_gradient + x.detach() * (1 - emb_frac_gradient)

        # embedding dropout

        x = self.emb_dropout(x)

        x = self.project_emb(x)

        if has_memory_tokens:
            mem_every = self.memory_tokens_interspersed_every

            if exists(mem_every):
                assert mem_every > 0
                assert isinstance(self.attn_layers, Decoder), 'only for decoder'
                next_seq_len = math.ceil(n / mem_every) * mem_every

                x = pad_at_dim(x, (0, next_seq_len - n), dim = -2, value = 0.)
                x = rearrange(x, 'b (n m) d -> (b n) m d', m = mem_every)

            mem = repeat(self.memory_tokens, 'n d -> b n d', b = x.shape[0])
            x, mem_packed_shape = pack((mem, x), 'b * d')

            # auto-handle masking after appending memory tokens
            if not exists(mem_every) and exists(mask):
                mask = pad_at_dim(mask, (num_mems, 0), dim = -1, value = True)

            if exists(mem_every):
                x = rearrange(x, '(b n) m d -> b (n m) d', b = b)

        if self.shift_mem_down and exists(mems):
            mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:]
            mems = [*mems_r, *mems_l]

        x, intermediates = self.attn_layers(x, mask = mask, mems = mems, cache = cache, return_hiddens = True, seq_start_pos = seq_start_pos, **kwargs)

        if has_memory_tokens:
            if exists(mem_every):
                x = rearrange(x, 'b (n m) d -> (b n) m d', m = (mem_every + num_mems))

            mem, x = unpack(x, mem_packed_shape, 'b * d')

            if exists(mem_every):
                x = rearrange(x, '(b n) m d -> b (n m) d', b = b)

            x = x[:, :n]

        if return_logits_and_embeddings:
            out = (self.to_logits(x), x)
        elif return_embeddings:
            out = x
        else:
            out = self.to_logits(x)

        if return_attn_z_loss:
            pre_softmax_attns = list(map(lambda t: t.pre_softmax_attn, intermediates.attn_intermediates))
            intermediates.attn_z_loss = calc_z_loss(pre_softmax_attns, weight = attn_z_loss_weight)
            return_intermediates = True

        if return_mems:
            hiddens = intermediates.hiddens
            new_mems = list(map(lambda pair: torch.cat(pair, dim = -2), zip(mems, hiddens))) if exists(mems) else hiddens
            new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))

            if not return_intermediates:
                return out, new_mems

            intermediates.mems = new_mems

        if return_intermediates:
            return out, intermediates

        if return_attn:
            attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
            return out, attn_maps

        return out

class ContinuousTransformerWrapper(nn.Module):
    def __init__(

        self,

        *,

        max_seq_len,

        attn_layers,

        dim_in = None,

        dim_out = None,

        emb_dim = None,

        max_mem_len = 0,

        post_emb_norm = False,

        emb_dropout = 0.,

        use_abs_pos_emb = True,

        scaled_sinu_pos_emb = False

    ):
        super().__init__()
        assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'

        dim = attn_layers.dim

        self.max_seq_len = max_seq_len

        self.max_mem_len = max_mem_len

        if not (use_abs_pos_emb and not attn_layers.has_pos_emb):
            self.pos_emb = always(0)
        elif scaled_sinu_pos_emb:
            self.pos_emb = ScaledSinusoidalEmbedding(dim)
        else:
            self.pos_emb = AbsolutePositionalEmbedding(dim, max_seq_len)

        self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity()
        self.emb_dropout = nn.Dropout(emb_dropout)

        self.project_in = nn.Linear(dim_in, dim) if exists(dim_in) else nn.Identity()

        self.attn_layers = attn_layers

        self.project_out = nn.Linear(dim, dim_out) if exists(dim_out) else nn.Identity()

    def forward(

        self,

        x,

        return_embeddings = False,

        return_intermediates = False,

        return_mems = False,

        mask = None,

        return_attn = False,

        mems = None,

        pos = None,

        prepend_embeds = None,

        **kwargs

    ):
        x = self.project_in(x)
        x = x + self.pos_emb(x, pos = pos)

        x = self.post_emb_norm(x)

        # whether to append embeds, as in PaLI, for image embeddings

        if exists(prepend_embeds):
            _, prepend_dim = prepend_embeds.shape[1:]
            assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as model dimensions'

            x = torch.cat((prepend_embeds, x), dim = -2)

        x = self.emb_dropout(x)

        x, intermediates = self.attn_layers(x, mask = mask, mems = mems, return_hiddens = True, **kwargs)

        out = self.project_out(x) if not return_embeddings else x

        if return_intermediates:
            return out, intermediates

        if return_mems:
            hiddens = intermediates.hiddens
            new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), hiddens))
            return out, new_mems

        if return_attn:
            attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
            return out, attn_maps

        return out

class XTransformer(nn.Module):
    def __init__(

        self,

        *,

        dim,

        tie_token_emb = False,

        ignore_index = -100,

        pad_value = 0,

        cross_attn_tokens_dropout = 0.,

        **kwargs

    ):
        super().__init__()
        enc_kwargs, kwargs = groupby_prefix_and_trim('enc_', kwargs)
        dec_kwargs, kwargs = groupby_prefix_and_trim('dec_', kwargs)

        assert 'dim' not in enc_kwargs and 'dim' not in dec_kwargs, 'dimension of either encoder or decoder must be set with `dim` keyword'
        enc_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], enc_kwargs)
        enc_transformer_kwargs['emb_dropout'] = enc_kwargs.pop('emb_dropout', 0)
        enc_transformer_kwargs['num_memory_tokens'] = enc_kwargs.pop('num_memory_tokens', None)
        enc_transformer_kwargs['scaled_sinu_pos_emb'] = enc_kwargs.pop('scaled_sinu_pos_emb', False)
        enc_transformer_kwargs['use_abs_pos_emb'] = enc_kwargs.pop('use_abs_pos_emb', True)

        dec_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], dec_kwargs)
        dec_transformer_kwargs['emb_dropout'] = dec_kwargs.pop('emb_dropout', 0)
        dec_transformer_kwargs['scaled_sinu_pos_emb'] = dec_kwargs.pop('scaled_sinu_pos_emb', False)
        dec_transformer_kwargs['use_abs_pos_emb'] = dec_kwargs.pop('use_abs_pos_emb', True)

        self.cross_attn_tokens_dropout = cross_attn_tokens_dropout  # how many tokens from the encoder to dropout when cross attending from decoder - seen in a couple papers, including Perceiver AR - this will also be very effective regularization when cross attending to very long memories

        self.encoder = TransformerWrapper(
            **enc_transformer_kwargs,
            attn_layers = Encoder(dim = dim, **enc_kwargs)
        )

        self.decoder = TransformerWrapper(
            **dec_transformer_kwargs,
            attn_layers = Decoder(dim = dim, cross_attend = True, **dec_kwargs)
        )

        if tie_token_emb:
            self.decoder.token_emb = self.encoder.token_emb

        self.decoder = AutoregressiveWrapper(self.decoder, ignore_index=ignore_index, pad_value=pad_value)

    @torch.no_grad()
    def generate(self, seq_in, seq_out_start, seq_len, mask = None, attn_mask = None, **kwargs):
        encodings = self.encoder(seq_in, mask = mask, attn_mask = attn_mask, return_embeddings = True)
        return self.decoder.generate(seq_out_start, seq_len, context = encodings, context_mask = mask, **kwargs)

    def forward(self, src, tgt, mask = None, attn_mask = None, src_prepend_embeds = None):

        if exists(src_prepend_embeds) and exists(mask):
            mask = pad_at_dim(mask, (src_prepend_embeds.shape[-2], 0), dim = -1, value = True)

        enc = self.encoder(src, mask = mask, attn_mask = attn_mask, prepend_embeds = src_prepend_embeds, return_embeddings = True)

        if self.training and self.cross_attn_tokens_dropout > 0:
            enc, mask = dropout_seq(enc, mask, self.cross_attn_tokens_dropout)

        out = self.decoder(tgt, context = enc, context_mask = mask)
        return out