File size: 17,636 Bytes
45454da
 
 
e3ed184
 
 
 
 
 
ce76c69
bedc750
b621c94
 
e3ed184
 
 
45454da
e3ed184
 
 
 
 
45454da
e3ed184
 
 
 
a2ef25c
 
3897f18
 
9c77576
71a3f78
 
 
a2ef25c
71a3f78
a6d9646
9c77576
b621c94
 
fa9d7e5
e3ed184
 
 
fa9d7e5
e3ed184
9c77576
 
 
 
 
 
 
97e1857
9c77576
3897f18
9c77576
 
71a3f78
 
a2ef25c
71a3f78
fec3f3e
9c77576
 
b621c94
 
e3ed184
 
1c9e690
 
 
e3ed184
 
 
 
 
 
1c9e690
e3ed184
 
 
 
 
 
 
 
 
 
0764984
e3ed184
 
 
 
 
 
 
 
 
 
 
 
 
 
b621c94
 
 
 
fa9d7e5
 
 
 
4a97c2b
fa9d7e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b621c94
 
e3ed184
 
 
fa9d7e5
e3ed184
 
 
78b066f
 
9c77576
 
832c4d6
9c77576
 
 
 
a6d9646
 
1d606db
9c77576
 
 
 
 
 
 
 
 
47ce9e4
78b066f
 
a2ef25c
78b066f
 
fb0ff2b
78b066f
 
fb0ff2b
77b1713
 
 
 
 
fb0ff2b
78b066f
fb0ff2b
78b066f
 
 
 
a6d9646
 
78b066f
 
 
 
 
77b1713
 
 
 
 
fb0ff2b
77b1713
 
 
 
 
 
 
 
 
 
 
fb0ff2b
78b066f
 
 
e3ed184
78b066f
e3ed184
a2ef25c
 
1d606db
b621c94
 
 
 
 
 
 
3897f18
b621c94
 
e3ed184
b621c94
 
 
 
 
 
 
 
 
 
 
 
 
78b066f
e3ed184
 
 
 
 
1d606db
e3ed184
 
 
6cc3f59
e3ed184
 
6cc3f59
e3ed184
 
 
 
fa9d7e5
e3ed184
fa9d7e5
 
 
6cc3f59
 
e3ed184
 
 
fa9d7e5
e3ed184
fa9d7e5
 
e3ed184
fa9d7e5
6cc3f59
fa9d7e5
 
 
 
 
e3ed184
fa9d7e5
e3ed184
fa9d7e5
e3ed184
fa9d7e5
e3ed184
6cc3f59
e3ed184
fa9d7e5
e3ed184
 
fa9d7e5
e3ed184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45454da
e3ed184
6cc3f59
e2681d4
45454da
e3ed184
45454da
70199bd
 
70fdd62
70199bd
 
e3ed184
70fdd62
70199bd
d34be48
70fdd62
 
02df4a2
d34be48
2a82684
7ff99e1
 
e3ed184
70fdd62
02df4a2
e367927
3897f18
02df4a2
70fdd62
e367927
70fdd62
d3eb29d
a6d9646
d3eb29d
e3ed184
 
 
 
 
 
 
 
 
 
71a3f78
a2ef25c
3897f18
 
9c77576
e367927
 
d3eb29d
a2ef25c
d3eb29d
a6d9646
9c77576
e3ed184
 
70199bd
a6d9646
 
 
 
 
70199bd
71a3f78
a2ef25c
3897f18
 
6cc3f59
 
e367927
d3eb29d
a2ef25c
d3eb29d
a6d9646
70199bd
 
 
bf588e1
2cda891
70199bd
 
e3ed184
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
#=======================================================================
# https://huggingface.co/spaces/asigalov61/Guided-Rock-Music-Transformer
#=======================================================================

import os
import time as reqtime
import datetime
from pytz import timezone

import copy
from itertools import groupby
import tqdm

import spaces
import gradio as gr

import torch
from x_transformer_1_23_2 import *
import random

import TMIDIX

from midi_to_colab_audio import midi_to_colab_audio

# =================================================================================================
                       
@spaces.GPU
def Generate_Rock_Song(input_midi,
                       input_gen_type,
                       input_number_prime_chords,
                       input_number_gen_chords,
                       input_use_original_durations,
                       input_match_original_pitches_counts,
                       input_number_prime_tokens,
                       input_number_gen_tokens,
                       input_num_memory_tokens,
                       input_model_temperature,
                       input_model_top_p
                      ):

    #===============================================================================
    
    print('=' * 70)
    print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    start_time = reqtime.time()
    print('=' * 70)

    fn = os.path.basename(input_midi)
    fn1 = fn.split('.')[0]

    print('=' * 70)
    print('Requested settings:')
    print('=' * 70)
    print('Input MIDI file name:', fn)
    print('Generation type:', input_gen_type)
    print('Number of prime chords:', input_number_prime_chords)
    print('Number of chords to generate:', input_number_gen_chords)
    print('Use original durations:', input_use_original_durations)
    print('Match original pitches counts:', input_match_original_pitches_counts)
    print('Number of prime tokens:', input_number_prime_tokens)
    print('Number of tokens to generate:', input_number_gen_tokens)
    print('Number of memory tokens:', input_num_memory_tokens)
    print('Model temperature:', input_model_temperature)
    print('Model sampling top p value:', input_model_top_p)
    print('=' * 70)

    #===============================================================================

    print('Loading model...')

    SEQ_LEN = 4096
    PAD_IDX = 673
    DEVICE = 'cuda' # 'cpu'

    # instantiate the model

    model = TransformerWrapper(
        num_tokens = PAD_IDX+1,
        max_seq_len = SEQ_LEN,
        attn_layers = Decoder(dim = 1024, depth = 16, heads = 16, rotary_pos_emb=True, attn_flash = True)
        )
    
    model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)

    model.to(DEVICE)
    print('=' * 70)

    print('Loading model checkpoint...')

    model.load_state_dict(
        torch.load('Guided_Rpck_Music_Transformer_Trained_Model_12081_steps_0.4113_loss_0.8747_acc.pth',
                   map_location=DEVICE))
    print('=' * 70)

    model.eval()

    if DEVICE == 'cpu':
        dtype = torch.bfloat16
    else:
        dtype = torch.bfloat16

    ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)

    print('Done!')
    print('=' * 70)

    #===============================================================================

    print('Loading MIDI...')
    
    #===============================================================================
    # Raw single-track ms score
    
    raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
    
    #===============================================================================
    # Enhanced score notes
    
    escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
    
    escore_notes = [e for e in escore_notes if e[6] < 72 or e[6] == 128]
    
    #=======================================================
    # PRE-PROCESSING
    
    #===============================================================================
    # Augmented enhanced score notes
    
    escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32, legacy_timings=True)
    
    #===============================================================================
    
    dscore = TMIDIX.enhanced_delta_score_notes(escore_notes)
    
    cscore = TMIDIX.chordify_score(dscore)
    
    #===============================================================================
    
    score_toks = []
    control_toks = []
    prime_toks = []
    
    for c in cscore:
    
        ctime = c[0][0]
    
        #=================================================================
    
        chord = sorted(c, key=lambda x: -x[5])
    
        gnotes = []
        gdrums = []
    
        for k, v in groupby(chord, key=lambda x: x[5]):
            if k == 128:
                gdrums.extend(sorted(v, key=lambda x: x[3], reverse=True))
            else:
                gnotes.append(sorted(v, key=lambda x: x[3], reverse=True))
    
        #=================================================================
    
        chord_toks = []
        ctoks = []
        ptoks = []
    
        chord_toks.append(ctime)
        ptoks.append(ctime)
    
        if gdrums:
            chord_toks.extend([e[3]+128 for e in gdrums] + [128])
            ptoks.extend([e[3]+128 for e in gdrums] + [128])
        
        else:
            chord_toks.append(128)
            ptoks.append(128)
    
        if gnotes:
            for g in gnotes:
                
                durs = [e[1] // 4 for e in g]
                clipped_dur = max(1, min(31, min(durs)))
                
                chan = max(0, min(8, g[0][5] // 8))
    
                chan_dur_tok = ((chan * 32) + clipped_dur) + 256
    
                ctoks.append([chan_dur_tok, len(g)])
    
                ptoks.append(chan_dur_tok)
                ptoks.extend([e[3]+544 for e in g])
                
        score_toks.append(chord_toks)
        control_toks.append(ctoks)
        prime_toks.append(ptoks)
        
    print('Done!')
    print('=' * 70)

    #==================================================================
    
    print('Sample output events', prime_toks[:16])
    print('=' * 70)
    print('Generating...')

    #==================================================================

    def generate_continuation(num_prime_tokens, num_gen_tokens):

        x = torch.tensor(TMIDIX.flatten(prime_toks)[:num_prime_tokens], dtype=torch.long, device=DEVICE)
        
        with ctx:
          out = model.generate(x,
                              num_gen_tokens,
                              filter_logits_fn=top_p,
                              filter_kwargs={'thres': input_model_top_p},
                              temperature=input_model_temperature,
                              return_prime=True,
                              verbose=True)
        
        y = out.tolist()[0]

        return y

    #==================================================================

    def generate_tokens(seq, max_num_ptcs=5, max_tries=10):
    
        input = copy.deepcopy(seq)

        pcount = 0
        y = 545
        tries = 0
    
        gen_tokens = []

        seen = False
    
        if 256 < input[-1] < 544:
          seen = True 

        while pcount < max_num_ptcs and y > 255 and tries < max_tries:
    
            x = torch.tensor(input[-input_num_memory_tokens:], dtype=torch.long, device=DEVICE)
        
            with ctx:
              out = model.generate(x,
                                  1,
                                  filter_logits_fn=top_p,
                                  filter_kwargs={'thres': input_model_top_p},
                                  return_prime=False,
                                  verbose=False)
            
            y = out[0].tolist()[0]
    
            if 256 < y < 544:
                if not seen:
                    input.append(y)
                    gen_tokens.append(y)
                    seen = True
                    
                else:
                    tries += 1
                    
            if y > 544 and seen:
                if pcount < max_num_ptcs and y not in gen_tokens:    
                    input.append(y)
                    gen_tokens.append(y)
                    pcount += 1
    
                else:
                    tries += 1
                
        return gen_tokens

    #==================================================================

    song = []
    
    if input_gen_type == 'Freestyle':
        
        output = generate_continuation(input_number_prime_tokens, input_number_gen_tokens)
        song.extend(output)

    else:

        for i in range(input_number_prime_chords):
            song.extend(prime_toks[i])
        
        for i in tqdm.tqdm(range(input_number_prime_chords, input_number_prime_chords+input_number_gen_chords)):
            
            song.extend(score_toks[i])
        
            if control_toks[i]:
                for ct in control_toks[i]:
                    
                    if input_use_original_durations:
                        song.append(ct[0])
                        
                    if input_match_original_pitches_counts:
                        out_seq = generate_tokens(song, ct[1])
                        
                    else:
                        out_seq = generate_tokens(song)
                        
                    song.extend(out_seq)
            
    print('=' * 70)
    print('Done!')
    print('=' * 70)
    
    #===============================================================================
    
    print('Rendering results...')
    
    print('=' * 70)
    print('Sample INTs', song[:15])
    print('=' * 70)
    
    if len(song) != 0:
    
        song_f = []
    
        time = 0
        dur = 32
        channel = 0
        pitch = 60
        vel = 90
        
        patches = [0, 10, 19, 24, 35, 40, 52, 56, 65, 9, 0, 0, 0, 0, 0, 0]
        velocities = [80, 100, 90, 100, 110, 100, 100, 100, 100, 110]
    
        for ss in song:
    
            if 0 <= ss < 128:
    
                time += ss * 32
                
            if 128 < ss < 256:
                
                song_f.append(['note', time, 32, 9, ss-128, velocities[9], 128])
                
            if 256 < ss < 544:
    
                dur =  ((ss-256) % 32) * 4 * 32
                channel = (ss-256) // 32
    
            if 544 < ss < 672:
    
                patch = channel * 8
    
                pitch = ss-544
    
                song_f.append(['note', time, dur, channel, pitch, velocities[channel], patch])

    fn1 = "Guided-Rock-Music-Transformer-Composition"
    
    detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
                                                              output_signature = 'Guided Rock Music Transformer',
                                                              output_file_name = fn1,
                                                              track_name='Project Los Angeles',
                                                              list_of_MIDI_patches=patches
                                                              )
    
    new_fn = fn1+'.mid'
            
    
    audio = midi_to_colab_audio(new_fn, 
                        soundfont_path=soundfont,
                        sample_rate=16000,
                        volume_scale=10,
                        output_for_gradio=True
                        )
    
    print('Done!')
    print('=' * 70)

    #========================================================

    output_midi_title = str(fn1)
    output_midi_summary = str(song_f[:3])
    output_midi = str(new_fn)
    output_audio = (16000, audio)
    
    output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)

    print('Output MIDI file name:', output_midi)
    print('Output MIDI title:', output_midi_title)
    print('Output MIDI summary:', output_midi_summary)
    print('=' * 70) 
    

    #========================================================
    
    print('-' * 70)
    print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('-' * 70)
    print('Req execution time:', (reqtime.time() - start_time), 'sec')

    return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot

# =================================================================================================

if __name__ == "__main__":
    
    PDT = timezone('US/Pacific')
    
    print('=' * 70)
    print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('=' * 70)

    soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"

    app = gr.Blocks()
    
    with app:
        
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Guided Rock Music Transformer</h1>")
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique rock music compositions with source augmented RoPE music transformer</h1>")
        gr.Markdown(
            "![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Guided-Rock-Music-Transformer&style=flat)\n\n")

        gr.Markdown("## Upload your MIDI or select a sample example MIDI below")
        gr.Markdown("### For best results use MIDIs with 1:2 notes to drums ratio")
        
        input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
        
        gr.Markdown("## Select generation type")

        input_gen_type = gr.Radio(["Controlled", "Freestyle"], value='Controlled', label="Generation type")

        gr.Markdown("## Controlled generation options")

        input_number_prime_chords = gr.Slider(0, 512, value=0, step=8, label="Number of prime chords")
        input_number_gen_chords = gr.Slider(16, 512, value=256, step=8, label="Number of chords to generate")
        input_use_original_durations = gr.Checkbox(label="Use original durations", value=True)
        input_match_original_pitches_counts = gr.Checkbox(label="Match original pitches counts", value=True)

        gr.Markdown("## Freestyle continuation options")

        input_number_prime_tokens = gr.Slider(0, 1024, value=512, step=16, label="Number of prime tokens")
        input_number_gen_tokens = gr.Slider(0, 3072, value=1024, step=16, label="Number of tokens to generate")

        gr.Markdown("## Model options")

        input_num_memory_tokens = gr.Slider(1024, 4096, value=2048, step=16, label="Number of memory tokens")
        input_model_temperature = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Model temperature")
        input_model_top_p = gr.Slider(0.1, 1, value=0.96, step=0.01, label="Model sampling top p value")
        
        run_btn = gr.Button("generate", variant="primary")

        gr.Markdown("## Generation results")

        output_midi_title = gr.Textbox(label="Output MIDI title")
        output_midi_summary = gr.Textbox(label="Output MIDI summary")
        output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
        output_plot = gr.Plot(label="Output MIDI score plot")
        output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])

        run_event = run_btn.click(Generate_Rock_Song, [input_midi,
                                                       input_gen_type,
                                                       input_number_prime_chords,
                                                       input_number_gen_chords,
                                                       input_use_original_durations,
                                                       input_match_original_pitches_counts,
                                                       input_number_prime_tokens,
                                                       input_number_gen_tokens,
                                                       input_num_memory_tokens,
                                                       input_model_temperature,
                                                       input_model_top_p,
                                                      ],
                                  [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])

        gr.Examples(
            [["Rock Violin.mid", "Controlled", 0, 512, True, True, 512, 1024, 2048, 0.9, 0.96],
             ["Come To My Window.mid", "Controlled", 128, 256, False, False, 512, 1024, 2048, 0.9, 0.96],
             ["Sharing The Night Together.kar", "Controlled", 128, 256, True, True, 512, 1024, 2048, 0.9, 0.96],
             ["Hotel California.mid", "Controlled", 128, 256, True, True, 512, 1024, 2048, 0.9, 0.96],
             ["Nothing Else Matters.kar", "Controlled", 128, 256, True, True, 512, 1024, 2048, 0.9, 0.96],
            ],
            [input_midi,
             input_gen_type,
             input_number_prime_chords,
             input_number_gen_chords,
             input_use_original_durations,
             input_match_original_pitches_counts,
             input_number_prime_tokens,
             input_number_gen_tokens,
             input_num_memory_tokens,
             input_model_temperature,
             input_model_top_p,
            ],
            [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
            Generate_Rock_Song,
            cache_examples=True,
            cache_mode='eager'
        )
        
        app.queue().launch()