File size: 21,902 Bytes
a3ef88a
4d440f4
 
a3ef88a
16dca97
 
 
a3ef88a
 
 
 
 
7dd2cd1
 
 
 
a3ef88a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4154701
a3ef88a
 
 
 
 
 
 
 
 
 
465603c
 
053cdcc
a3ef88a
 
 
8586ed2
7b3dcbc
a3ef88a
 
0792426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
465603c
0792426
 
 
 
 
 
 
 
 
a3ef88a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b88ed43
a3ef88a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d440f4
a3ef88a
 
4d440f4
a3ef88a
 
 
 
 
 
 
 
 
 
 
 
 
4154701
a3ef88a
890ef0c
 
 
 
 
 
 
a3ef88a
 
 
 
 
 
890ef0c
a3ef88a
890ef0c
a3ef88a
 
 
 
 
 
 
8d92046
bc6831a
 
 
 
a3ef88a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
890ef0c
 
 
 
 
 
 
 
 
bc6831a
 
 
890ef0c
 
a3ef88a
 
 
 
890ef0c
 
 
 
 
 
8586ed2
 
 
 
a3ef88a
 
 
 
 
8586ed2
673739f
 
 
a3ef88a
890ef0c
 
a3ef88a
 
 
 
 
 
 
 
 
 
 
 
 
7b3dcbc
 
 
a3ef88a
7b3dcbc
a3ef88a
 
 
7b3dcbc
 
 
 
 
 
 
 
 
 
 
 
a3ef88a
0489b1b
 
 
 
 
 
 
 
 
 
8586ed2
a3ef88a
8586ed2
a3ef88a
 
 
 
890ef0c
 
 
 
 
 
8586ed2
 
 
 
a3ef88a
7dd2cd1
bc6831a
930090d
 
bc6831a
930090d
6da0de9
 
 
 
930090d
63a4ff8
 
930090d
8586ed2
930090d
 
63a4ff8
 
 
a3ef88a
 
 
 
890ef0c
a3ef88a
 
 
8586ed2
 
 
 
a3ef88a
 
8586ed2
bc6831a
 
 
 
 
 
a3ef88a
8586ed2
a3ef88a
 
 
8586ed2
a3ef88a
8586ed2
 
a3ef88a
8586ed2
 
d7ab2ca
8586ed2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3ef88a
8586ed2
 
a3ef88a
8586ed2
 
 
 
a3ef88a
 
 
8586ed2
a3ef88a
8586ed2
a3ef88a
8586ed2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3ef88a
8586ed2
 
a3ef88a
8586ed2
a3ef88a
8586ed2
a3ef88a
8586ed2
 
 
a3ef88a
8586ed2
 
a3ef88a
 
8586ed2
d7ab2ca
a3ef88a
d7ab2ca
 
890ef0c
a3ef88a
 
8edbfbe
 
 
 
 
 
a3ef88a
205c7b8
932ddff
1446958
205c7b8
 
14b9312
 
 
 
 
 
 
 
aeee50c
14b9312
 
 
 
 
 
2c6a087
 
8586ed2
 
 
 
 
 
8f73deb
a3ef88a
 
8586ed2
 
a3ef88a
 
 
890ef0c
a3ef88a
890ef0c
 
 
a3ef88a
 
 
 
 
 
 
8586ed2
a3ef88a
 
 
 
 
 
 
 
 
 
 
 
 
890ef0c
a3ef88a
 
 
8586ed2
 
 
 
a3ef88a
 
 
 
 
 
4023dd5
a3ef88a
 
 
 
 
 
 
 
8586ed2
 
 
 
 
a3ef88a
8586ed2
a3ef88a
8edbfbe
 
b506373
8edbfbe
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
#==================================================================================
# https://huggingface.co/spaces/asigalov61/Giant-Music-Transformer
#==================================================================================

print('=' * 70)
print('Giant Music Transformer Gradio App')

print('=' * 70)
print('Loading core Giant Music Transformer modules...')

import os

import time as reqtime
import datetime
from pytz import timezone

print('=' * 70)
print('Loading main Giant Music Transformer modules...')

os.environ['USE_FLASH_ATTENTION'] = '1'

import torch

torch.set_float32_matmul_precision('high')
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
torch.backends.cuda.enable_mem_efficient_sdp(True)
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_cudnn_sdp(True)

import TMIDIX

from midi_to_colab_audio import midi_to_colab_audio

from x_transformer_1_23_2 import *

import random

print('=' * 70)
print('Loading aux Giant Music Transformer modules...')

import matplotlib.pyplot as plt

import gradio as gr
import spaces

print('=' * 70)
print('PyTorch version:', torch.__version__)
print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)

#==================================================================================

MODEL_CHECKPOINT = 'Giant_Music_Transformer_Medium_Trained_Model_25603_steps_0.3799_loss_0.8934_acc.pth'

SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'

NUM_OUT_BATCHES = 8

PREVIEW_LENGTH = 120 # in tokens

#==================================================================================

print('=' * 70)
print('Instantiating model...')

device_type = 'cuda'
dtype = 'bfloat16'

ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)

SEQ_LEN = 8192
PAD_IDX = 19463

model = TransformerWrapper(
        num_tokens = PAD_IDX+1,
        max_seq_len = SEQ_LEN,
        attn_layers = Decoder(dim = 2048,
                              depth = 8,
                              heads = 32,
                              rotary_pos_emb = True,
                              attn_flash = True
                              )
)

model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)

print('=' * 70)
print('Loading model checkpoint...')

model.load_state_dict(torch.load(MODEL_CHECKPOINT, map_location='cpu'))

print('=' * 70)
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)

#==================================================================================

def load_midi(input_midi):

    raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
    
    escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)
    
    escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], timings_divider=16)

    instruments_list = list(set([y[6] for y in escore_notes]))

    #=======================================================
    # FINAL PROCESSING
    #=======================================================
    
    melody_chords = []

    # Break between compositions / Intro seq
    
    if 128 in instruments_list:
      drums_present = 19331 # Yes
    else:
      drums_present = 19330 # No
    
    pat = escore_notes[0][6]
    
    melody_chords.extend([19461, drums_present, 19332+pat]) # Intro seq
    
    #=======================================================
    # MAIN PROCESSING CYCLE
    #=======================================================
    
    pe = escore_notes[0]
    
    for e in escore_notes:
    
        #=======================================================
        # Timings...
        
        # Cliping all values...
        delta_time = max(0, min(255, e[1]-pe[1]))
        
        # Durations and channels
        
        dur = max(0, min(255, e[2]))
        cha = max(0, min(15, e[3]))
        
        # Patches
        if cha == 9: # Drums patch will be == 128
          pat = 128
        
        else:
          pat = e[6]
        
        # Pitches
        
        ptc = max(1, min(127, e[4]))
        
        # Velocities
        
        # Calculating octo-velocity
        vel = max(8, min(127, e[5]))
        velocity = round(vel / 15)-1
        
        #=======================================================
        # FINAL NOTE SEQ
        #=======================================================
        
        # Writing final note asynchronously
        
        dur_vel = (8 * dur) + velocity
        pat_ptc = (129 * pat) + ptc
        
        melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304])
        
        pe = e

    return melody_chords

#==================================================================================

def save_midi(tokens, batch_number=None):

    song = tokens
    song_f = []
    
    time = 0
    dur = 0
    vel = 90
    pitch = 0
    channel = 0
    
    patches = [-1] * 16
    patches[9] = 9
    
    channels = [0] * 16
    channels[9] = 1
    
    for ss in song:
    
      if 0 <= ss < 256:
    
          time += ss * 16
    
      if 256 <= ss < 2304:
    
          dur = ((ss-256) // 8) * 16
          vel = (((ss-256) % 8)+1) * 15
    
      if 2304 <= ss < 18945:
    
          patch = (ss-2304) // 129
    
          if patch < 128:
    
              if patch not in patches:
                if 0 in channels:
                    cha = channels.index(0)
                    channels[cha] = 1
                else:
                    cha = 15
    
                patches[cha] = patch
                channel = patches.index(patch)
              else:
                channel = patches.index(patch)
    
          if patch == 128:
              channel = 9
    
          pitch = (ss-2304) % 129
    
          song_f.append(['note', time, dur, channel, pitch, vel, patch ])
    
    patches = [0 if x==-1 else x for x in patches]

    if batch_number == None:
        fname = 'Giant-Music-Transformer-Music-Composition'
        
    else:
        fname = 'Giant-Music-Transformer-Music-Composition_'+str(batch_number)
    
    data = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
                                                  output_signature = 'Giant Music Transformer',
                                                  output_file_name = fname,
                                                  track_name='Project Los Angeles',
                                                  list_of_MIDI_patches=patches,
                                                  verbose=False
                                                  )

    return song_f

#==================================================================================

@spaces.GPU
def generate_music(prime, 
                   num_gen_tokens,
                   num_mem_tokens,
                   num_gen_batches,
                   gen_outro,
                   gen_drums,
                   model_temperature,
                   model_sampling_top_p
                  ):

    if not prime:
        inputs = [19461]

    else:
        inputs = prime[-num_mem_tokens:]

    if gen_outro == 'Force':
      inputs.extend([18945])
    
    if gen_drums:
        drums = [36, 38]
        drum_pitch = random.choice(drums)
        inputs.extend([0, ((8*8)+6)+256, ((128*129)+drum_pitch)+2304])
        
    # torch.cuda.empty_cache()
    model.cuda()
    model.eval()

    print('Generating...')
    
    inp = [inputs] * num_gen_batches
    
    inp = torch.LongTensor(inp).cuda()
    
    with ctx:
      with torch.inference_mode():
        out = model.generate(inp,
                              num_gen_tokens,
                              filter_logits_fn=top_p,
                              filter_kwargs={'thres': model_sampling_top_p},
                              temperature=model_temperature,
                              return_prime=False,
                              verbose=False)
    
    output = out.tolist()

    output_batches = []

    if gen_outro == 'Disable':
        for o in output:
            output_batches.append([t for t in o if not 18944 < t < 19330])

    else:
        output_batches = output

    print('Done!')
    print('=' * 70)
            
    return output_batches
    
#==================================================================================

def generate_callback(input_midi, 
                      num_prime_tokens, 
                      num_gen_tokens,
                      num_mem_tokens,
                      gen_outro,
                      gen_drums,
                      model_temperature,
                      model_sampling_top_p,
                      final_composition, 
                      generated_batches, 
                      block_lines
                     ):

    generated_batches = []

    if not final_composition and input_midi is not None:
        final_composition = load_midi(input_midi)[:num_prime_tokens]
        midi_score = save_midi(final_composition)
        block_lines.append(midi_score[-1][1] / 1000)
        
    batched_gen_tokens = generate_music(final_composition, 
                                        num_gen_tokens,
                                        num_mem_tokens,
                                        NUM_OUT_BATCHES,
                                        gen_outro,
                                        gen_drums,
                                        model_temperature,
                                        model_sampling_top_p
                                       )
    
    outputs = []
    
    for i in range(len(batched_gen_tokens)):

        tokens = batched_gen_tokens[i]
        
        # Preview
        tokens_preview = final_composition[-PREVIEW_LENGTH:]
        
        # Save MIDI to a temporary file
        midi_score = save_midi(tokens_preview + tokens, i)

        # MIDI plot

        if len(final_composition) > PREVIEW_LENGTH:
            midi_plot = TMIDIX.plot_ms_SONG(midi_score, 
                                            plot_title='Batch # ' + str(i),
                                            preview_length_in_notes=int(PREVIEW_LENGTH / 3),
                                            return_plt=True
                                           )

        else:
            midi_plot = TMIDIX.plot_ms_SONG(midi_score, 
                                            plot_title='Batch # ' + str(i), 
                                            return_plt=True
                                           )

        # File name
        fname = 'Giant-Music-Transformer-Music-Composition_'+str(i)
        
        # Save audio to a temporary file
        midi_audio = midi_to_colab_audio(fname + '.mid', 
                                        soundfont_path=SOUDFONT_PATH,
                                        sample_rate=16000,
                                        output_for_gradio=True
                                        )

        outputs.append([(16000, midi_audio), midi_plot, tokens])
        
    return outputs, final_composition, generated_batches, block_lines

#==================================================================================

def generate_callback_wrapper(input_midi, 
                              num_prime_tokens, 
                              num_gen_tokens,
                              num_mem_tokens,
                              gen_outro,
                              gen_drums,
                              model_temperature,
                              model_sampling_top_p,
                              final_composition, 
                              generated_batches, 
                              block_lines
                             ):

    print('=' * 70)
    print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    start_time = reqtime.time()
    
    print('=' * 70)
    if input_midi is not None:
            fn = os.path.basename(input_midi.name)
            fn1 = fn.split('.')[0]
            print('Input file name:', fn)

    print('Num prime tokens:', num_prime_tokens)
    print('Num gen tokens:', num_gen_tokens)
    print('Num mem tokens:', num_mem_tokens)
    print('Gen drums:', gen_drums)
    print('Gen outro:', gen_outro)

    print('Model temp:', model_temperature)
    print('Model top_p:', model_sampling_top_p)
    print('=' * 70)
    
    result = generate_callback(input_midi, 
                                num_prime_tokens, 
                                num_gen_tokens,
                                num_mem_tokens,
                                gen_outro,
                                gen_drums,
                                model_temperature,
                                model_sampling_top_p,
                                final_composition,
                                generated_batches,
                                block_lines
                             )
    
    generated_batches = [sublist[-1] for sublist in result[0]]

    print('=' * 70)
    print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('=' * 70)
    print('Req execution time:', (reqtime.time() - start_time), 'sec')
    print('*' * 70)    
    
    return tuple([result[1], generated_batches, result[3]] + [item for sublist in result[0] for item in sublist[:-1]])

#==================================================================================

def add_batch(batch_number, final_composition, generated_batches, block_lines):

    if generated_batches:
        final_composition.extend(generated_batches[batch_number])

        # Save MIDI to a temporary file
        midi_score = save_midi(final_composition)
    
        block_lines.append(midi_score[-1][1] / 1000)

        # MIDI plot
        midi_plot = TMIDIX.plot_ms_SONG(midi_score, 
                                        plot_title='Giant Music Transformer Composition',
                                        block_lines_times_list=block_lines[:-1],
                                        return_plt=True)
        
        # File name
        fname = 'Giant-Music-Transformer-Music-Composition'
        
        # Save audio to a temporary file
        midi_audio = midi_to_colab_audio(fname + '.mid', 
                                        soundfont_path=SOUDFONT_PATH,
                                        sample_rate=16000,
                                        output_for_gradio=True
                                        )
    
        print('Added batch #', batch_number)
        print('=' * 70)

        return (16000, midi_audio), midi_plot, fname+'.mid', final_composition, generated_batches, block_lines

    else:
        return None, None, None, [], [], []

#==================================================================================

def remove_batch(batch_number, num_tokens, final_composition, generated_batches, block_lines):

    if final_composition:

        if len(final_composition) > num_tokens:
            final_composition = final_composition[:-num_tokens]
            block_lines.pop()
    
        # Save MIDI to a temporary file
        midi_score = save_midi(final_composition)
    
        # MIDI plot
        midi_plot = TMIDIX.plot_ms_SONG(midi_score, 
                                        plot_title='Giant Music Transformer Composition',
                                        block_lines_times_list=block_lines[:-1],
                                        return_plt=True)
    
        # File name
        fname = 'Giant-Music-Transformer-Music-Composition'
        
        # Save audio to a temporary file
        midi_audio = midi_to_colab_audio(fname + '.mid', 
                                        soundfont_path=SOUDFONT_PATH,
                                        sample_rate=16000,
                                        output_for_gradio=True
                                        )
        
        print('Removed batch #', batch_number)
        print('=' * 70)
        
        return (16000, midi_audio), midi_plot, fname+'.mid', final_composition, generated_batches, block_lines

    else:
        return None, None, None, [], [], []

#==================================================================================

def reset(final_composition=[], generated_batches=[], block_lines=[]):
    
    final_composition = []
    generated_batches = []
    block_lines = []

    return final_composition, generated_batches, block_lines
    
#==================================================================================

def reset_demo(final_composition=[], generated_batches=[], block_lines=[]):
    
    final_composition = []
    generated_batches = []
    block_lines = []

#==================================================================================

PDT = timezone('US/Pacific')

print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)

with gr.Blocks() as demo:

    demo.load(reset_demo)

    gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Giant Music Transformer</h1>")
    gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Fast multi-instrumental music transformer with true full MIDI instruments range, efficient encoding, octo-velocity and outro tokens</h1>")
    gr.HTML("""
            Check out <a href="https://github.com/asigalov61/Giant-Music-Transformer">Giant Music Transformer</a> on GitHub!
            
            <p>
                <a href="https://colab.research.google.com/github/asigalov61/Giant-Music-Transformer/blob/main/Giant_Music_Transformer.ipynb">
                    <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab">
                </a> or 
                <a href="https://huggingface.co/spaces/asigalov61/Giant-Music-Transformer?duplicate=true">
                    <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face">
                </a>
            </p>
            
            for faster execution and endless generation!
            """)

    #==================================================================================

    final_composition = gr.State([])
    generated_batches = gr.State([])
    block_lines = gr.State([])
    
    #==================================================================================
    
    gr.Markdown("## Upload seed MIDI or click 'Generate' button for random output")
    
    input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
    input_midi.upload(reset, [final_composition, generated_batches, block_lines], 
                            [final_composition, generated_batches, block_lines])
    
    gr.Markdown("## Generate")
    
    num_prime_tokens = gr.Slider(15, 6990, value=600, step=3, label="Number of prime tokens")
    num_gen_tokens = gr.Slider(15, 1200, value=600, step=3, label="Number of tokens to generate")
    num_mem_tokens = gr.Slider(15, 6990, value=6990, step=3, label="Number of memory tokens")
    gen_drums = gr.Checkbox(value=False, label="Introduce drums")
    gen_outro = gr.Radio(["Auto", "Disable", "Force"], value="Auto", label="Outro options")
    model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature")
    model_sampling_top_p = gr.Slider(0.1, 1, value=0.96, step=0.01, label="Model sampling top p value")
    
    generate_btn = gr.Button("Generate", variant="primary")

    gr.Markdown("## Select batch")
    
    outputs = [final_composition, generated_batches, block_lines]
    
    for i in range(NUM_OUT_BATCHES):
        with gr.Tab(f"Batch # {i}") as tab:
            
            audio_output = gr.Audio(label=f"Batch # {i} MIDI Audio", format="mp3", elem_id="midi_audio")
            plot_output = gr.Plot(label=f"Batch # {i} MIDI Plot")
            
            outputs.extend([audio_output, plot_output])

    generate_btn.click(generate_callback_wrapper, 
                       [input_midi, 
                        num_prime_tokens, 
                        num_gen_tokens,
                        num_mem_tokens,
                        gen_outro,
                        gen_drums,
                        model_temperature,
                        model_sampling_top_p,
                        final_composition,
                        generated_batches,
                        block_lines                        
                       ], 
                       outputs
                      )
    
    gr.Markdown("## Add/Remove batch")
    
    batch_number = gr.Slider(0, NUM_OUT_BATCHES-1, value=0, step=1, label="Batch number to add/remove")
    
    add_btn = gr.Button("Add batch", variant="primary")
    remove_btn = gr.Button("Remove batch", variant="stop")
    
    final_audio_output = gr.Audio(label="Final MIDI audio", format="mp3", elem_id="midi_audio")
    final_plot_output = gr.Plot(label="Final MIDI plot")
    final_file_output = gr.File(label="Final MIDI file")

    add_btn.click(add_batch, [batch_number, final_composition, generated_batches, block_lines],
                  [final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines])       

    remove_btn.click(remove_batch, [batch_number, num_gen_tokens, final_composition, generated_batches, block_lines], 
                     [final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines])

    demo.unload(reset_demo)

#==================================================================================

demo.launch()

#==================================================================================