Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,902 Bytes
a3ef88a 4d440f4 a3ef88a 16dca97 a3ef88a 7dd2cd1 a3ef88a 4154701 a3ef88a 465603c 053cdcc a3ef88a 8586ed2 7b3dcbc a3ef88a 0792426 465603c 0792426 a3ef88a b88ed43 a3ef88a 4d440f4 a3ef88a 4d440f4 a3ef88a 4154701 a3ef88a 890ef0c a3ef88a 890ef0c a3ef88a 890ef0c a3ef88a 8d92046 bc6831a a3ef88a 890ef0c bc6831a 890ef0c a3ef88a 890ef0c 8586ed2 a3ef88a 8586ed2 673739f a3ef88a 890ef0c a3ef88a 7b3dcbc a3ef88a 7b3dcbc a3ef88a 7b3dcbc a3ef88a 0489b1b 8586ed2 a3ef88a 8586ed2 a3ef88a 890ef0c 8586ed2 a3ef88a 7dd2cd1 bc6831a 930090d bc6831a 930090d 6da0de9 930090d 63a4ff8 930090d 8586ed2 930090d 63a4ff8 a3ef88a 890ef0c a3ef88a 8586ed2 a3ef88a 8586ed2 bc6831a a3ef88a 8586ed2 a3ef88a 8586ed2 a3ef88a 8586ed2 a3ef88a 8586ed2 d7ab2ca 8586ed2 a3ef88a 8586ed2 a3ef88a 8586ed2 a3ef88a 8586ed2 a3ef88a 8586ed2 a3ef88a 8586ed2 a3ef88a 8586ed2 a3ef88a 8586ed2 a3ef88a 8586ed2 a3ef88a 8586ed2 a3ef88a 8586ed2 a3ef88a 8586ed2 d7ab2ca a3ef88a d7ab2ca 890ef0c a3ef88a 8edbfbe a3ef88a 205c7b8 932ddff 1446958 205c7b8 14b9312 aeee50c 14b9312 2c6a087 8586ed2 8f73deb a3ef88a 8586ed2 a3ef88a 890ef0c a3ef88a 890ef0c a3ef88a 8586ed2 a3ef88a 890ef0c a3ef88a 8586ed2 a3ef88a 4023dd5 a3ef88a 8586ed2 a3ef88a 8586ed2 a3ef88a 8edbfbe b506373 8edbfbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
#==================================================================================
# https://huggingface.co/spaces/asigalov61/Giant-Music-Transformer
#==================================================================================
print('=' * 70)
print('Giant Music Transformer Gradio App')
print('=' * 70)
print('Loading core Giant Music Transformer modules...')
import os
import time as reqtime
import datetime
from pytz import timezone
print('=' * 70)
print('Loading main Giant Music Transformer modules...')
os.environ['USE_FLASH_ATTENTION'] = '1'
import torch
torch.set_float32_matmul_precision('high')
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
torch.backends.cuda.enable_mem_efficient_sdp(True)
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_cudnn_sdp(True)
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
from x_transformer_1_23_2 import *
import random
print('=' * 70)
print('Loading aux Giant Music Transformer modules...')
import matplotlib.pyplot as plt
import gradio as gr
import spaces
print('=' * 70)
print('PyTorch version:', torch.__version__)
print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)
#==================================================================================
MODEL_CHECKPOINT = 'Giant_Music_Transformer_Medium_Trained_Model_25603_steps_0.3799_loss_0.8934_acc.pth'
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
NUM_OUT_BATCHES = 8
PREVIEW_LENGTH = 120 # in tokens
#==================================================================================
print('=' * 70)
print('Instantiating model...')
device_type = 'cuda'
dtype = 'bfloat16'
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 8192
PAD_IDX = 19463
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 2048,
depth = 8,
heads = 32,
rotary_pos_emb = True,
attn_flash = True
)
)
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(torch.load(MODEL_CHECKPOINT, map_location='cpu'))
print('=' * 70)
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)
#==================================================================================
def load_midi(input_midi):
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], timings_divider=16)
instruments_list = list(set([y[6] for y in escore_notes]))
#=======================================================
# FINAL PROCESSING
#=======================================================
melody_chords = []
# Break between compositions / Intro seq
if 128 in instruments_list:
drums_present = 19331 # Yes
else:
drums_present = 19330 # No
pat = escore_notes[0][6]
melody_chords.extend([19461, drums_present, 19332+pat]) # Intro seq
#=======================================================
# MAIN PROCESSING CYCLE
#=======================================================
pe = escore_notes[0]
for e in escore_notes:
#=======================================================
# Timings...
# Cliping all values...
delta_time = max(0, min(255, e[1]-pe[1]))
# Durations and channels
dur = max(0, min(255, e[2]))
cha = max(0, min(15, e[3]))
# Patches
if cha == 9: # Drums patch will be == 128
pat = 128
else:
pat = e[6]
# Pitches
ptc = max(1, min(127, e[4]))
# Velocities
# Calculating octo-velocity
vel = max(8, min(127, e[5]))
velocity = round(vel / 15)-1
#=======================================================
# FINAL NOTE SEQ
#=======================================================
# Writing final note asynchronously
dur_vel = (8 * dur) + velocity
pat_ptc = (129 * pat) + ptc
melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304])
pe = e
return melody_chords
#==================================================================================
def save_midi(tokens, batch_number=None):
song = tokens
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
patches = [-1] * 16
patches[9] = 9
channels = [0] * 16
channels[9] = 1
for ss in song:
if 0 <= ss < 256:
time += ss * 16
if 256 <= ss < 2304:
dur = ((ss-256) // 8) * 16
vel = (((ss-256) % 8)+1) * 15
if 2304 <= ss < 18945:
patch = (ss-2304) // 129
if patch < 128:
if patch not in patches:
if 0 in channels:
cha = channels.index(0)
channels[cha] = 1
else:
cha = 15
patches[cha] = patch
channel = patches.index(patch)
else:
channel = patches.index(patch)
if patch == 128:
channel = 9
pitch = (ss-2304) % 129
song_f.append(['note', time, dur, channel, pitch, vel, patch ])
patches = [0 if x==-1 else x for x in patches]
if batch_number == None:
fname = 'Giant-Music-Transformer-Music-Composition'
else:
fname = 'Giant-Music-Transformer-Music-Composition_'+str(batch_number)
data = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Giant Music Transformer',
output_file_name = fname,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches,
verbose=False
)
return song_f
#==================================================================================
@spaces.GPU
def generate_music(prime,
num_gen_tokens,
num_mem_tokens,
num_gen_batches,
gen_outro,
gen_drums,
model_temperature,
model_sampling_top_p
):
if not prime:
inputs = [19461]
else:
inputs = prime[-num_mem_tokens:]
if gen_outro == 'Force':
inputs.extend([18945])
if gen_drums:
drums = [36, 38]
drum_pitch = random.choice(drums)
inputs.extend([0, ((8*8)+6)+256, ((128*129)+drum_pitch)+2304])
# torch.cuda.empty_cache()
model.cuda()
model.eval()
print('Generating...')
inp = [inputs] * num_gen_batches
inp = torch.LongTensor(inp).cuda()
with ctx:
with torch.inference_mode():
out = model.generate(inp,
num_gen_tokens,
filter_logits_fn=top_p,
filter_kwargs={'thres': model_sampling_top_p},
temperature=model_temperature,
return_prime=False,
verbose=False)
output = out.tolist()
output_batches = []
if gen_outro == 'Disable':
for o in output:
output_batches.append([t for t in o if not 18944 < t < 19330])
else:
output_batches = output
print('Done!')
print('=' * 70)
return output_batches
#==================================================================================
def generate_callback(input_midi,
num_prime_tokens,
num_gen_tokens,
num_mem_tokens,
gen_outro,
gen_drums,
model_temperature,
model_sampling_top_p,
final_composition,
generated_batches,
block_lines
):
generated_batches = []
if not final_composition and input_midi is not None:
final_composition = load_midi(input_midi)[:num_prime_tokens]
midi_score = save_midi(final_composition)
block_lines.append(midi_score[-1][1] / 1000)
batched_gen_tokens = generate_music(final_composition,
num_gen_tokens,
num_mem_tokens,
NUM_OUT_BATCHES,
gen_outro,
gen_drums,
model_temperature,
model_sampling_top_p
)
outputs = []
for i in range(len(batched_gen_tokens)):
tokens = batched_gen_tokens[i]
# Preview
tokens_preview = final_composition[-PREVIEW_LENGTH:]
# Save MIDI to a temporary file
midi_score = save_midi(tokens_preview + tokens, i)
# MIDI plot
if len(final_composition) > PREVIEW_LENGTH:
midi_plot = TMIDIX.plot_ms_SONG(midi_score,
plot_title='Batch # ' + str(i),
preview_length_in_notes=int(PREVIEW_LENGTH / 3),
return_plt=True
)
else:
midi_plot = TMIDIX.plot_ms_SONG(midi_score,
plot_title='Batch # ' + str(i),
return_plt=True
)
# File name
fname = 'Giant-Music-Transformer-Music-Composition_'+str(i)
# Save audio to a temporary file
midi_audio = midi_to_colab_audio(fname + '.mid',
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
output_for_gradio=True
)
outputs.append([(16000, midi_audio), midi_plot, tokens])
return outputs, final_composition, generated_batches, block_lines
#==================================================================================
def generate_callback_wrapper(input_midi,
num_prime_tokens,
num_gen_tokens,
num_mem_tokens,
gen_outro,
gen_drums,
model_temperature,
model_sampling_top_p,
final_composition,
generated_batches,
block_lines
):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
if input_midi is not None:
fn = os.path.basename(input_midi.name)
fn1 = fn.split('.')[0]
print('Input file name:', fn)
print('Num prime tokens:', num_prime_tokens)
print('Num gen tokens:', num_gen_tokens)
print('Num mem tokens:', num_mem_tokens)
print('Gen drums:', gen_drums)
print('Gen outro:', gen_outro)
print('Model temp:', model_temperature)
print('Model top_p:', model_sampling_top_p)
print('=' * 70)
result = generate_callback(input_midi,
num_prime_tokens,
num_gen_tokens,
num_mem_tokens,
gen_outro,
gen_drums,
model_temperature,
model_sampling_top_p,
final_composition,
generated_batches,
block_lines
)
generated_batches = [sublist[-1] for sublist in result[0]]
print('=' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
print('*' * 70)
return tuple([result[1], generated_batches, result[3]] + [item for sublist in result[0] for item in sublist[:-1]])
#==================================================================================
def add_batch(batch_number, final_composition, generated_batches, block_lines):
if generated_batches:
final_composition.extend(generated_batches[batch_number])
# Save MIDI to a temporary file
midi_score = save_midi(final_composition)
block_lines.append(midi_score[-1][1] / 1000)
# MIDI plot
midi_plot = TMIDIX.plot_ms_SONG(midi_score,
plot_title='Giant Music Transformer Composition',
block_lines_times_list=block_lines[:-1],
return_plt=True)
# File name
fname = 'Giant-Music-Transformer-Music-Composition'
# Save audio to a temporary file
midi_audio = midi_to_colab_audio(fname + '.mid',
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
output_for_gradio=True
)
print('Added batch #', batch_number)
print('=' * 70)
return (16000, midi_audio), midi_plot, fname+'.mid', final_composition, generated_batches, block_lines
else:
return None, None, None, [], [], []
#==================================================================================
def remove_batch(batch_number, num_tokens, final_composition, generated_batches, block_lines):
if final_composition:
if len(final_composition) > num_tokens:
final_composition = final_composition[:-num_tokens]
block_lines.pop()
# Save MIDI to a temporary file
midi_score = save_midi(final_composition)
# MIDI plot
midi_plot = TMIDIX.plot_ms_SONG(midi_score,
plot_title='Giant Music Transformer Composition',
block_lines_times_list=block_lines[:-1],
return_plt=True)
# File name
fname = 'Giant-Music-Transformer-Music-Composition'
# Save audio to a temporary file
midi_audio = midi_to_colab_audio(fname + '.mid',
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
output_for_gradio=True
)
print('Removed batch #', batch_number)
print('=' * 70)
return (16000, midi_audio), midi_plot, fname+'.mid', final_composition, generated_batches, block_lines
else:
return None, None, None, [], [], []
#==================================================================================
def reset(final_composition=[], generated_batches=[], block_lines=[]):
final_composition = []
generated_batches = []
block_lines = []
return final_composition, generated_batches, block_lines
#==================================================================================
def reset_demo(final_composition=[], generated_batches=[], block_lines=[]):
final_composition = []
generated_batches = []
block_lines = []
#==================================================================================
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
with gr.Blocks() as demo:
demo.load(reset_demo)
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Giant Music Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Fast multi-instrumental music transformer with true full MIDI instruments range, efficient encoding, octo-velocity and outro tokens</h1>")
gr.HTML("""
Check out <a href="https://github.com/asigalov61/Giant-Music-Transformer">Giant Music Transformer</a> on GitHub!
<p>
<a href="https://colab.research.google.com/github/asigalov61/Giant-Music-Transformer/blob/main/Giant_Music_Transformer.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab">
</a> or
<a href="https://huggingface.co/spaces/asigalov61/Giant-Music-Transformer?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face">
</a>
</p>
for faster execution and endless generation!
""")
#==================================================================================
final_composition = gr.State([])
generated_batches = gr.State([])
block_lines = gr.State([])
#==================================================================================
gr.Markdown("## Upload seed MIDI or click 'Generate' button for random output")
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
input_midi.upload(reset, [final_composition, generated_batches, block_lines],
[final_composition, generated_batches, block_lines])
gr.Markdown("## Generate")
num_prime_tokens = gr.Slider(15, 6990, value=600, step=3, label="Number of prime tokens")
num_gen_tokens = gr.Slider(15, 1200, value=600, step=3, label="Number of tokens to generate")
num_mem_tokens = gr.Slider(15, 6990, value=6990, step=3, label="Number of memory tokens")
gen_drums = gr.Checkbox(value=False, label="Introduce drums")
gen_outro = gr.Radio(["Auto", "Disable", "Force"], value="Auto", label="Outro options")
model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature")
model_sampling_top_p = gr.Slider(0.1, 1, value=0.96, step=0.01, label="Model sampling top p value")
generate_btn = gr.Button("Generate", variant="primary")
gr.Markdown("## Select batch")
outputs = [final_composition, generated_batches, block_lines]
for i in range(NUM_OUT_BATCHES):
with gr.Tab(f"Batch # {i}") as tab:
audio_output = gr.Audio(label=f"Batch # {i} MIDI Audio", format="mp3", elem_id="midi_audio")
plot_output = gr.Plot(label=f"Batch # {i} MIDI Plot")
outputs.extend([audio_output, plot_output])
generate_btn.click(generate_callback_wrapper,
[input_midi,
num_prime_tokens,
num_gen_tokens,
num_mem_tokens,
gen_outro,
gen_drums,
model_temperature,
model_sampling_top_p,
final_composition,
generated_batches,
block_lines
],
outputs
)
gr.Markdown("## Add/Remove batch")
batch_number = gr.Slider(0, NUM_OUT_BATCHES-1, value=0, step=1, label="Batch number to add/remove")
add_btn = gr.Button("Add batch", variant="primary")
remove_btn = gr.Button("Remove batch", variant="stop")
final_audio_output = gr.Audio(label="Final MIDI audio", format="mp3", elem_id="midi_audio")
final_plot_output = gr.Plot(label="Final MIDI plot")
final_file_output = gr.File(label="Final MIDI file")
add_btn.click(add_batch, [batch_number, final_composition, generated_batches, block_lines],
[final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines])
remove_btn.click(remove_batch, [batch_number, num_gen_tokens, final_composition, generated_batches, block_lines],
[final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines])
demo.unload(reset_demo)
#==================================================================================
demo.launch()
#================================================================================== |