Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,578 Bytes
dcca7d2 208cf4e dcca7d2 208cf4e dcca7d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
import os
import numpy as np
import audioread
import librosa
from mido import MidiFile
from piano_vad import (note_detection_with_onset_offset_regress,
pedal_detection_with_onset_offset_regress)
import config
def create_folder(fd):
if not os.path.exists(fd):
os.makedirs(fd)
def get_filename(path):
path = os.path.realpath(path)
na_ext = path.split('/')[-1]
na = os.path.splitext(na_ext)[0]
return na
def note_to_freq(piano_note):
return 2 ** ((piano_note - 39) / 12) * 440
def float32_to_int16(x):
assert np.max(np.abs(x)) <= 1.
return (x * 32767.).astype(np.int16)
def int16_to_float32(x):
return (x / 32767.).astype(np.float32)
def pad_truncate_sequence(x, max_len):
if len(x) < max_len:
return np.concatenate((x, np.zeros(max_len - len(x))))
else:
return x[0 : max_len]
def read_midi(midi_path):
"""Parse MIDI file.
Args:
midi_path: str
Returns:
midi_dict: dict, e.g. {
'midi_event': [
'program_change channel=0 program=0 time=0',
'control_change channel=0 control=64 value=127 time=0',
'control_change channel=0 control=64 value=63 time=236',
...],
'midi_event_time': [0., 0, 0.98307292, ...]}
"""
midi_file = MidiFile(midi_path)
ticks_per_beat = midi_file.ticks_per_beat
assert len(midi_file.tracks) == 2
"""The first track contains tempo, time signature. The second track
contains piano events."""
microseconds_per_beat = midi_file.tracks[0][0].tempo
beats_per_second = 1e6 / microseconds_per_beat
ticks_per_second = ticks_per_beat * beats_per_second
message_list = []
ticks = 0
time_in_second = []
for message in midi_file.tracks[1]:
message_list.append(str(message))
ticks += message.time
time_in_second.append(ticks / ticks_per_second)
midi_dict = {
'midi_event': np.array(message_list),
'midi_event_time': np.array(time_in_second)}
return midi_dict
def write_events_to_midi(start_time, note_events, pedal_events, midi_path):
"""Write out note events to MIDI file.
Args:
start_time: float
note_events: list of dict, e.g. [
{'midi_note': 51, 'onset_time': 696.63544, 'offset_time': 696.9948, 'velocity': 44},
{'midi_note': 58, 'onset_time': 696.99585, 'offset_time': 697.18646, 'velocity': 50}
...]
midi_path: str
"""
from mido import Message, MidiFile, MidiTrack, MetaMessage
# This configuration is the same as MIDIs in MAESTRO dataset
ticks_per_beat = 384
beats_per_second = 2
ticks_per_second = ticks_per_beat * beats_per_second
microseconds_per_beat = int(1e6 // beats_per_second)
midi_file = MidiFile()
midi_file.ticks_per_beat = ticks_per_beat
# Track 0
track0 = MidiTrack()
track0.append(MetaMessage('set_tempo', tempo=microseconds_per_beat, time=0))
track0.append(MetaMessage('time_signature', numerator=4, denominator=4, time=0))
track0.append(MetaMessage('end_of_track', time=1))
midi_file.tracks.append(track0)
# Track 1
track1 = MidiTrack()
# Message rolls of MIDI
message_roll = []
for note_event in note_events:
# Onset
message_roll.append({
'time': note_event['onset_time'],
'midi_note': note_event['midi_note'],
'velocity': note_event['velocity']})
# Offset
message_roll.append({
'time': note_event['offset_time'],
'midi_note': note_event['midi_note'],
'velocity': 0})
if pedal_events:
for pedal_event in pedal_events:
message_roll.append({'time': pedal_event['onset_time'], 'control_change': 64, 'value': 127})
message_roll.append({'time': pedal_event['offset_time'], 'control_change': 64, 'value': 0})
# Sort MIDI messages by time
message_roll.sort(key=lambda note_event: note_event['time'])
previous_ticks = 0
for message in message_roll:
this_ticks = int((message['time'] - start_time) * ticks_per_second)
if this_ticks >= 0:
diff_ticks = this_ticks - previous_ticks
previous_ticks = this_ticks
if 'midi_note' in message.keys():
track1.append(Message('note_on', note=message['midi_note'], velocity=message['velocity'], time=diff_ticks))
elif 'control_change' in message.keys():
track1.append(Message('control_change', channel=0, control=message['control_change'], value=message['value'], time=diff_ticks))
track1.append(MetaMessage('end_of_track', time=1))
midi_file.tracks.append(track1)
midi_file.save(midi_path)
class RegressionPostProcessor(object):
def __init__(self, frames_per_second, classes_num, onset_threshold,
offset_threshold, frame_threshold, pedal_offset_threshold):
"""Postprocess the output probabilities of a transription model to MIDI
events.
Args:
frames_per_second: int
classes_num: int
onset_threshold: float
offset_threshold: float
frame_threshold: float
pedal_offset_threshold: float
"""
self.frames_per_second = frames_per_second
self.classes_num = classes_num
self.onset_threshold = onset_threshold
self.offset_threshold = offset_threshold
self.frame_threshold = frame_threshold
self.pedal_offset_threshold = pedal_offset_threshold
self.begin_note = config.begin_note
self.velocity_scale = config.velocity_scale
def output_dict_to_midi_events(self, output_dict):
"""Main function. Post process model outputs to MIDI events.
Args:
output_dict: {
'reg_onset_output': (segment_frames, classes_num),
'reg_offset_output': (segment_frames, classes_num),
'frame_output': (segment_frames, classes_num),
'velocity_output': (segment_frames, classes_num),
'reg_pedal_onset_output': (segment_frames, 1),
'reg_pedal_offset_output': (segment_frames, 1),
'pedal_frame_output': (segment_frames, 1)}
Outputs:
est_note_events: list of dict, e.g. [
{'onset_time': 39.74, 'offset_time': 39.87, 'midi_note': 27, 'velocity': 83},
{'onset_time': 11.98, 'offset_time': 12.11, 'midi_note': 33, 'velocity': 88}]
est_pedal_events: list of dict, e.g. [
{'onset_time': 0.17, 'offset_time': 0.96},
{'osnet_time': 1.17, 'offset_time': 2.65}]
"""
# Post process piano note outputs to piano note and pedal events information
(est_on_off_note_vels, est_pedal_on_offs) = \
self.output_dict_to_note_pedal_arrays(output_dict)
"""est_on_off_note_vels: (events_num, 4), the four columns are: [onset_time, offset_time, piano_note, velocity],
est_pedal_on_offs: (pedal_events_num, 2), the two columns are: [onset_time, offset_time]"""
# Reformat notes to MIDI events
est_note_events = self.detected_notes_to_events(est_on_off_note_vels)
if est_pedal_on_offs is None:
est_pedal_events = None
else:
est_pedal_events = self.detected_pedals_to_events(est_pedal_on_offs)
return est_note_events, est_pedal_events
def output_dict_to_note_pedal_arrays(self, output_dict):
"""Postprocess the output probabilities of a transription model to MIDI
events.
Args:
output_dict: dict, {
'reg_onset_output': (frames_num, classes_num),
'reg_offset_output': (frames_num, classes_num),
'frame_output': (frames_num, classes_num),
'velocity_output': (frames_num, classes_num),
...}
Returns:
est_on_off_note_vels: (events_num, 4), the 4 columns are onset_time,
offset_time, piano_note and velocity. E.g. [
[39.74, 39.87, 27, 0.65],
[11.98, 12.11, 33, 0.69],
...]
est_pedal_on_offs: (pedal_events_num, 2), the 2 columns are onset_time
and offset_time. E.g. [
[0.17, 0.96],
[1.17, 2.65],
...]
"""
# ------ 1. Process regression outputs to binarized outputs ------
# For example, onset or offset of [0., 0., 0.15, 0.30, 0.40, 0.35, 0.20, 0.05, 0., 0.]
# will be processed to [0., 0., 0., 0., 1., 0., 0., 0., 0., 0.]
# Calculate binarized onset output from regression output
(onset_output, onset_shift_output) = \
self.get_binarized_output_from_regression(
reg_output=output_dict['reg_onset_output'],
threshold=self.onset_threshold, neighbour=2)
output_dict['onset_output'] = onset_output # Values are 0 or 1
output_dict['onset_shift_output'] = onset_shift_output
# Calculate binarized offset output from regression output
(offset_output, offset_shift_output) = \
self.get_binarized_output_from_regression(
reg_output=output_dict['reg_offset_output'],
threshold=self.offset_threshold, neighbour=4)
output_dict['offset_output'] = offset_output # Values are 0 or 1
output_dict['offset_shift_output'] = offset_shift_output
if 'reg_pedal_onset_output' in output_dict.keys():
"""Pedal onsets are not used in inference. Instead, frame-wise pedal
predictions are used to detect onsets. We empirically found this is
more accurate to detect pedal onsets."""
pass
if 'reg_pedal_offset_output' in output_dict.keys():
# Calculate binarized pedal offset output from regression output
(pedal_offset_output, pedal_offset_shift_output) = \
self.get_binarized_output_from_regression(
reg_output=output_dict['reg_pedal_offset_output'],
threshold=self.pedal_offset_threshold, neighbour=4)
output_dict['pedal_offset_output'] = pedal_offset_output # Values are 0 or 1
output_dict['pedal_offset_shift_output'] = pedal_offset_shift_output
# ------ 2. Process matrices results to event results ------
# Detect piano notes from output_dict
est_on_off_note_vels = self.output_dict_to_detected_notes(output_dict)
if 'reg_pedal_onset_output' in output_dict.keys():
# Detect piano pedals from output_dict
est_pedal_on_offs = self.output_dict_to_detected_pedals(output_dict)
else:
est_pedal_on_offs = None
return est_on_off_note_vels, est_pedal_on_offs
def get_binarized_output_from_regression(self, reg_output, threshold, neighbour):
"""Calculate binarized output and shifts of onsets or offsets from the
regression results.
Args:
reg_output: (frames_num, classes_num)
threshold: float
neighbour: int
Returns:
binary_output: (frames_num, classes_num)
shift_output: (frames_num, classes_num)
"""
binary_output = np.zeros_like(reg_output)
shift_output = np.zeros_like(reg_output)
(frames_num, classes_num) = reg_output.shape
for k in range(classes_num):
x = reg_output[:, k]
for n in range(neighbour, frames_num - neighbour):
if x[n] > threshold and self.is_monotonic_neighbour(x, n, neighbour):
binary_output[n, k] = 1
"""See Section III-D in [1] for deduction.
[1] Q. Kong, et al., High-resolution Piano Transcription
with Pedals by Regressing Onsets and Offsets Times, 2020."""
if x[n - 1] > x[n + 1]:
shift = (x[n + 1] - x[n - 1]) / (x[n] - x[n + 1]) / 2
else:
shift = (x[n + 1] - x[n - 1]) / (x[n] - x[n - 1]) / 2
shift_output[n, k] = shift
return binary_output, shift_output
def is_monotonic_neighbour(self, x, n, neighbour):
"""Detect if values are monotonic in both side of x[n].
Args:
x: (frames_num,)
n: int
neighbour: int
Returns:
monotonic: bool
"""
monotonic = True
for i in range(neighbour):
if x[n - i] < x[n - i - 1]:
monotonic = False
if x[n + i] < x[n + i + 1]:
monotonic = False
return monotonic
def output_dict_to_detected_notes(self, output_dict):
"""Postprocess output_dict to piano notes.
Args:
output_dict: dict, e.g. {
'onset_output': (frames_num, classes_num),
'onset_shift_output': (frames_num, classes_num),
'offset_output': (frames_num, classes_num),
'offset_shift_output': (frames_num, classes_num),
'frame_output': (frames_num, classes_num),
'onset_output': (frames_num, classes_num),
...}
Returns:
est_on_off_note_vels: (notes, 4), the four columns are onsets, offsets,
MIDI notes and velocities. E.g.,
[[39.7375, 39.7500, 27., 0.6638],
[11.9824, 12.5000, 33., 0.6892],
...]
"""
est_tuples = []
est_midi_notes = []
classes_num = output_dict['frame_output'].shape[-1]
for piano_note in range(classes_num):
"""Detect piano notes"""
est_tuples_per_note = note_detection_with_onset_offset_regress(
frame_output=output_dict['frame_output'][:, piano_note],
onset_output=output_dict['onset_output'][:, piano_note],
onset_shift_output=output_dict['onset_shift_output'][:, piano_note],
offset_output=output_dict['offset_output'][:, piano_note],
offset_shift_output=output_dict['offset_shift_output'][:, piano_note],
velocity_output=output_dict['velocity_output'][:, piano_note],
frame_threshold=self.frame_threshold)
est_tuples += est_tuples_per_note
est_midi_notes += [piano_note + self.begin_note] * len(est_tuples_per_note)
est_tuples = np.array(est_tuples) # (notes, 5)
"""(notes, 5), the five columns are onset, offset, onset_shift,
offset_shift and normalized_velocity"""
est_midi_notes = np.array(est_midi_notes) # (notes,)
if len(est_tuples) == 0:
return np.array([])
else:
onset_times = (est_tuples[:, 0] + est_tuples[:, 2]) / self.frames_per_second
offset_times = (est_tuples[:, 1] + est_tuples[:, 3]) / self.frames_per_second
velocities = est_tuples[:, 4]
est_on_off_note_vels = np.stack((onset_times, offset_times, est_midi_notes, velocities), axis=-1)
"""(notes, 3), the three columns are onset_times, offset_times and velocity."""
est_on_off_note_vels = est_on_off_note_vels.astype(np.float32)
return est_on_off_note_vels
def output_dict_to_detected_pedals(self, output_dict):
"""Postprocess output_dict to piano pedals.
Args:
output_dict: dict, e.g. {
'pedal_frame_output': (frames_num,),
'pedal_offset_output': (frames_num,),
'pedal_offset_shift_output': (frames_num,),
...}
Returns:
est_on_off: (notes, 2), the two columns are pedal onsets and pedal
offsets. E.g.,
[[0.1800, 0.9669],
[1.1400, 2.6458],
...]
"""
frames_num = output_dict['pedal_frame_output'].shape[0]
est_tuples = pedal_detection_with_onset_offset_regress(
frame_output=output_dict['pedal_frame_output'][:, 0],
offset_output=output_dict['pedal_offset_output'][:, 0],
offset_shift_output=output_dict['pedal_offset_shift_output'][:, 0],
frame_threshold=0.5)
est_tuples = np.array(est_tuples)
"""(notes, 2), the two columns are pedal onsets and pedal offsets"""
if len(est_tuples) == 0:
return np.array([])
else:
onset_times = (est_tuples[:, 0] + est_tuples[:, 2]) / self.frames_per_second
offset_times = (est_tuples[:, 1] + est_tuples[:, 3]) / self.frames_per_second
est_on_off = np.stack((onset_times, offset_times), axis=-1)
est_on_off = est_on_off.astype(np.float32)
return est_on_off
def detected_notes_to_events(self, est_on_off_note_vels):
"""Reformat detected notes to midi events.
Args:
est_on_off_vels: (notes, 3), the three columns are onset_times,
offset_times and velocity. E.g.
[[32.8376, 35.7700, 0.7932],
[37.3712, 39.9300, 0.8058],
...]
Returns:
midi_events, list, e.g.,
[{'onset_time': 39.7376, 'offset_time': 39.75, 'midi_note': 27, 'velocity': 84},
{'onset_time': 11.9824, 'offset_time': 12.50, 'midi_note': 33, 'velocity': 88},
...]
"""
midi_events = []
for i in range(est_on_off_note_vels.shape[0]):
midi_events.append({
'onset_time': est_on_off_note_vels[i][0],
'offset_time': est_on_off_note_vels[i][1],
'midi_note': int(est_on_off_note_vels[i][2]),
'velocity': int(est_on_off_note_vels[i][3] * self.velocity_scale)})
return midi_events
def detected_pedals_to_events(self, pedal_on_offs):
"""Reformat detected pedal onset and offsets to events.
Args:
pedal_on_offs: (notes, 2), the two columns are pedal onsets and pedal
offsets. E.g.,
[[0.1800, 0.9669],
[1.1400, 2.6458],
...]
Returns:
pedal_events: list of dict, e.g.,
[{'onset_time': 0.1800, 'offset_time': 0.9669},
{'onset_time': 1.1400, 'offset_time': 2.6458},
...]
"""
pedal_events = []
for i in range(len(pedal_on_offs)):
pedal_events.append({
'onset_time': pedal_on_offs[i, 0],
'offset_time': pedal_on_offs[i, 1]})
return pedal_events
def load_audio(path, sr=22050, mono=True, offset=0.0, duration=None,
dtype=np.float32, res_type='kaiser_best',
backends=[audioread.ffdec.FFmpegAudioFile]):
"""Load audio. Copied from librosa.core.load() except that ffmpeg backend is
always used in this function."""
y = []
with audioread.audio_open(os.path.realpath(path), backends=backends) as input_file:
sr_native = input_file.samplerate
n_channels = input_file.channels
s_start = int(np.round(sr_native * offset)) * n_channels
if duration is None:
s_end = np.inf
else:
s_end = s_start + (int(np.round(sr_native * duration))
* n_channels)
n = 0
for frame in input_file:
frame = frame = librosa.util.buf_to_float(frame, n_bytes=2, dtype=dtype)
n_prev = n
n = n + len(frame)
if n < s_start:
# offset is after the current frame
# keep reading
continue
if s_end < n_prev:
# we're off the end. stop reading
break
if s_end < n:
# the end is in this frame. crop.
frame = frame[:s_end - n_prev]
if n_prev <= s_start <= n:
# beginning is in this frame
frame = frame[(s_start - n_prev):]
# tack on the current frame
y.append(frame)
if y:
y = np.concatenate(y)
if n_channels > 1:
y = y.reshape((-1, n_channels)).T
if mono:
y = librosa.to_mono(y)
if sr is not None:
y = librosa.resample(y, orig_sr=sr_native, target_sr=sr, res_type=res_type)
else:
sr = sr_native
# Final cleanup for dtype and contiguity
y = np.ascontiguousarray(y, dtype=dtype)
return (y, sr) |