File size: 13,018 Bytes
dcca7d2
 
 
 
 
 
 
 
 
 
 
 
1b682a5
dcca7d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import os
import sys
import math
import time
import numpy as np
import matplotlib.pyplot as plt

import torch
import torch.nn as nn
import torch.nn.functional as F

from torchlibrosa.stft import Spectrogram, LogmelFilterBank
from pytorch_utils import move_data_to_device


def init_layer(layer):
    """Initialize a Linear or Convolutional layer. """
    nn.init.xavier_uniform_(layer.weight)
 
    if hasattr(layer, 'bias'):
        if layer.bias is not None:
            layer.bias.data.fill_(0.)
            
    
def init_bn(bn):
    """Initialize a Batchnorm layer. """
    bn.bias.data.fill_(0.)
    bn.weight.data.fill_(1.)


def init_gru(rnn):
    """Initialize a GRU layer. """
    
    def _concat_init(tensor, init_funcs):
        (length, fan_out) = tensor.shape
        fan_in = length // len(init_funcs)
    
        for (i, init_func) in enumerate(init_funcs):
            init_func(tensor[i * fan_in : (i + 1) * fan_in, :])
        
    def _inner_uniform(tensor):
        fan_in = nn.init._calculate_correct_fan(tensor, 'fan_in')
        nn.init.uniform_(tensor, -math.sqrt(3 / fan_in), math.sqrt(3 / fan_in))
    
    for i in range(rnn.num_layers):
        _concat_init(
            getattr(rnn, 'weight_ih_l{}'.format(i)),
            [_inner_uniform, _inner_uniform, _inner_uniform]
        )
        torch.nn.init.constant_(getattr(rnn, 'bias_ih_l{}'.format(i)), 0)

        _concat_init(
            getattr(rnn, 'weight_hh_l{}'.format(i)),
            [_inner_uniform, _inner_uniform, nn.init.orthogonal_]
        )
        torch.nn.init.constant_(getattr(rnn, 'bias_hh_l{}'.format(i)), 0)


class ConvBlock(nn.Module):
    def __init__(self, in_channels, out_channels, momentum):
        
        super(ConvBlock, self).__init__()
        
        self.conv1 = nn.Conv2d(in_channels=in_channels, 
                              out_channels=out_channels,
                              kernel_size=(3, 3), stride=(1, 1),
                              padding=(1, 1), bias=False)
                              
        self.conv2 = nn.Conv2d(in_channels=out_channels, 
                              out_channels=out_channels,
                              kernel_size=(3, 3), stride=(1, 1),
                              padding=(1, 1), bias=False)
                              
        self.bn1 = nn.BatchNorm2d(out_channels, momentum)
        self.bn2 = nn.BatchNorm2d(out_channels, momentum)

        self.init_weight()
        
    def init_weight(self):
        init_layer(self.conv1)
        init_layer(self.conv2)
        init_bn(self.bn1)
        init_bn(self.bn2)

        
    def forward(self, input, pool_size=(2, 2), pool_type='avg'):
        """
        Args:
          input: (batch_size, in_channels, time_steps, freq_bins)
        Outputs:
          output: (batch_size, out_channels, classes_num)
        """

        x = F.relu_(self.bn1(self.conv1(input)))
        x = F.relu_(self.bn2(self.conv2(x)))
        
        if pool_type == 'avg':
            x = F.avg_pool2d(x, kernel_size=pool_size)
        
        return x


class AcousticModelCRnn8Dropout(nn.Module):
    def __init__(self, classes_num, midfeat, momentum):
        super(AcousticModelCRnn8Dropout, self).__init__()

        self.conv_block1 = ConvBlock(in_channels=1, out_channels=48, momentum=momentum)
        self.conv_block2 = ConvBlock(in_channels=48, out_channels=64, momentum=momentum)
        self.conv_block3 = ConvBlock(in_channels=64, out_channels=96, momentum=momentum)
        self.conv_block4 = ConvBlock(in_channels=96, out_channels=128, momentum=momentum)

        self.fc5 = nn.Linear(midfeat, 768, bias=False)
        self.bn5 = nn.BatchNorm1d(768, momentum=momentum)

        self.gru = nn.GRU(input_size=768, hidden_size=256, num_layers=2, 
            bias=True, batch_first=True, dropout=0., bidirectional=True)

        self.fc = nn.Linear(512, classes_num, bias=True)
        
        self.init_weight()

    def init_weight(self):
        init_layer(self.fc5)
        init_bn(self.bn5)
        init_gru(self.gru)
        init_layer(self.fc)

    def forward(self, input):
        """
        Args:
          input: (batch_size, channels_num, time_steps, freq_bins)
        Outputs:
          output: (batch_size, time_steps, classes_num)
        """

        x = self.conv_block1(input, pool_size=(1, 2), pool_type='avg')
        x = F.dropout(x, p=0.2, training=self.training)
        x = self.conv_block2(x, pool_size=(1, 2), pool_type='avg')
        x = F.dropout(x, p=0.2, training=self.training)
        x = self.conv_block3(x, pool_size=(1, 2), pool_type='avg')
        x = F.dropout(x, p=0.2, training=self.training)
        x = self.conv_block4(x, pool_size=(1, 2), pool_type='avg')
        x = F.dropout(x, p=0.2, training=self.training)

        x = x.transpose(1, 2).flatten(2)
        x = F.relu(self.bn5(self.fc5(x).transpose(1, 2)).transpose(1, 2))
        x = F.dropout(x, p=0.5, training=self.training, inplace=True)
        
        (x, _) = self.gru(x)
        x = F.dropout(x, p=0.5, training=self.training, inplace=False)
        output = torch.sigmoid(self.fc(x))
        return output


class Regress_onset_offset_frame_velocity_CRNN(nn.Module):
    def __init__(self, frames_per_second, classes_num):
        super(Regress_onset_offset_frame_velocity_CRNN, self).__init__()

        sample_rate = 16000
        window_size = 2048
        hop_size = sample_rate // frames_per_second
        mel_bins = 229
        fmin = 30
        fmax = sample_rate // 2

        window = 'hann'
        center = True
        pad_mode = 'reflect'
        ref = 1.0
        amin = 1e-10
        top_db = None

        midfeat = 1792
        momentum = 0.01

        # Spectrogram extractor
        self.spectrogram_extractor = Spectrogram(n_fft=window_size, 
            hop_length=hop_size, win_length=window_size, window=window, 
            center=center, pad_mode=pad_mode, freeze_parameters=True)

        # Logmel feature extractor
        self.logmel_extractor = LogmelFilterBank(sr=sample_rate, 
            n_fft=window_size, n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, 
            amin=amin, top_db=top_db, freeze_parameters=True)

        self.bn0 = nn.BatchNorm2d(mel_bins, momentum)

        self.frame_model = AcousticModelCRnn8Dropout(classes_num, midfeat, momentum)
        self.reg_onset_model = AcousticModelCRnn8Dropout(classes_num, midfeat, momentum)
        self.reg_offset_model = AcousticModelCRnn8Dropout(classes_num, midfeat, momentum)
        self.velocity_model = AcousticModelCRnn8Dropout(classes_num, midfeat, momentum)

        self.reg_onset_gru = nn.GRU(input_size=88 * 2, hidden_size=256, num_layers=1, 
            bias=True, batch_first=True, dropout=0., bidirectional=True)
        self.reg_onset_fc = nn.Linear(512, classes_num, bias=True)

        self.frame_gru = nn.GRU(input_size=88 * 3, hidden_size=256, num_layers=1, 
            bias=True, batch_first=True, dropout=0., bidirectional=True)
        self.frame_fc = nn.Linear(512, classes_num, bias=True)

        self.init_weight()

    def init_weight(self):
        init_bn(self.bn0)
        init_gru(self.reg_onset_gru)
        init_gru(self.frame_gru)
        init_layer(self.reg_onset_fc)
        init_layer(self.frame_fc)
 
    def forward(self, input):
        """
        Args:
          input: (batch_size, data_length)
        Outputs:
          output_dict: dict, {
            'reg_onset_output': (batch_size, time_steps, classes_num),
            'reg_offset_output': (batch_size, time_steps, classes_num),
            'frame_output': (batch_size, time_steps, classes_num),
            'velocity_output': (batch_size, time_steps, classes_num)
          }
        """

        x = self.spectrogram_extractor(input)   # (batch_size, 1, time_steps, freq_bins)
        x = self.logmel_extractor(x)    # (batch_size, 1, time_steps, mel_bins)

        x = x.transpose(1, 3)
        x = self.bn0(x)
        x = x.transpose(1, 3)

        frame_output = self.frame_model(x)  # (batch_size, time_steps, classes_num)
        reg_onset_output = self.reg_onset_model(x)  # (batch_size, time_steps, classes_num)
        reg_offset_output = self.reg_offset_model(x)    # (batch_size, time_steps, classes_num)
        velocity_output = self.velocity_model(x)    # (batch_size, time_steps, classes_num)
 
        # Use velocities to condition onset regression
        x = torch.cat((reg_onset_output, (reg_onset_output ** 0.5) * velocity_output.detach()), dim=2)
        (x, _) = self.reg_onset_gru(x)
        x = F.dropout(x, p=0.5, training=self.training, inplace=False)
        reg_onset_output = torch.sigmoid(self.reg_onset_fc(x))
        """(batch_size, time_steps, classes_num)"""

        # Use onsets and offsets to condition frame-wise classification
        x = torch.cat((frame_output, reg_onset_output.detach(), reg_offset_output.detach()), dim=2)
        (x, _) = self.frame_gru(x)
        x = F.dropout(x, p=0.5, training=self.training, inplace=False)
        frame_output = torch.sigmoid(self.frame_fc(x))  # (batch_size, time_steps, classes_num)
        """(batch_size, time_steps, classes_num)"""

        output_dict = {
            'reg_onset_output': reg_onset_output, 
            'reg_offset_output': reg_offset_output, 
            'frame_output': frame_output, 
            'velocity_output': velocity_output}

        return output_dict


class Regress_pedal_CRNN(nn.Module):
    def __init__(self, frames_per_second, classes_num):
        super(Regress_pedal_CRNN, self).__init__()

        sample_rate = 16000
        window_size = 2048
        hop_size = sample_rate // frames_per_second
        mel_bins = 229
        fmin = 30
        fmax = sample_rate // 2

        window = 'hann'
        center = True
        pad_mode = 'reflect'
        ref = 1.0
        amin = 1e-10
        top_db = None

        midfeat = 1792
        momentum = 0.01

        # Spectrogram extractor
        self.spectrogram_extractor = Spectrogram(n_fft=window_size, 
            hop_length=hop_size, win_length=window_size, window=window, 
            center=center, pad_mode=pad_mode, freeze_parameters=True)

        # Logmel feature extractor
        self.logmel_extractor = LogmelFilterBank(sr=sample_rate, 
            n_fft=window_size, n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, 
            amin=amin, top_db=top_db, freeze_parameters=True)

        self.bn0 = nn.BatchNorm2d(mel_bins, momentum)

        self.reg_pedal_onset_model = AcousticModelCRnn8Dropout(1, midfeat, momentum)
        self.reg_pedal_offset_model = AcousticModelCRnn8Dropout(1, midfeat, momentum)
        self.reg_pedal_frame_model = AcousticModelCRnn8Dropout(1, midfeat, momentum)
        
        self.init_weight()

    def init_weight(self):
        init_bn(self.bn0)
        
    def forward(self, input):
        """
        Args:
          input: (batch_size, data_length)
        Outputs:
          output_dict: dict, {
            'reg_onset_output': (batch_size, time_steps, classes_num),
            'reg_offset_output': (batch_size, time_steps, classes_num),
            'frame_output': (batch_size, time_steps, classes_num),
            'velocity_output': (batch_size, time_steps, classes_num)
          }
        """

        x = self.spectrogram_extractor(input)   # (batch_size, 1, time_steps, freq_bins)
        x = self.logmel_extractor(x)    # (batch_size, 1, time_steps, mel_bins)

        x = x.transpose(1, 3)
        x = self.bn0(x)
        x = x.transpose(1, 3)

        reg_pedal_onset_output = self.reg_pedal_onset_model(x)  # (batch_size, time_steps, classes_num)
        reg_pedal_offset_output = self.reg_pedal_offset_model(x)  # (batch_size, time_steps, classes_num)
        pedal_frame_output = self.reg_pedal_frame_model(x)  # (batch_size, time_steps, classes_num)
        
        output_dict = {
            'reg_pedal_onset_output': reg_pedal_onset_output, 
            'reg_pedal_offset_output': reg_pedal_offset_output,
            'pedal_frame_output': pedal_frame_output}

        return output_dict


# This model is not trained, but is combined from the trained note and pedal models.
class Note_pedal(nn.Module):
    def __init__(self, frames_per_second, classes_num):
        """The combination of note and pedal model.
        """
        super(Note_pedal, self).__init__()

        self.note_model = Regress_onset_offset_frame_velocity_CRNN(frames_per_second, classes_num)
        self.pedal_model = Regress_pedal_CRNN(frames_per_second, classes_num)

    def load_state_dict(self, m, strict=False):
        self.note_model.load_state_dict(m['note_model'], strict=strict)
        self.pedal_model.load_state_dict(m['pedal_model'], strict=strict)

    def forward(self, input):
        note_output_dict = self.note_model(input)
        pedal_output_dict = self.pedal_model(input)

        full_output_dict = {}
        full_output_dict.update(note_output_dict)
        full_output_dict.update(pedal_output_dict)
        return full_output_dict