Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,839 Bytes
b6bb234 2a68ddd 3fea55e b6bb234 2a68ddd b6bb234 037c7a6 2a68ddd 498b808 2a68ddd b6bb234 a3e0baa 037c7a6 a3e0baa 7b0fbfe 606e959 6c71f04 606e959 6c71f04 11f0dcb b6bb234 a3e0baa b6bb234 a3e0baa b6bb234 498b808 6c71f04 a3e0baa 037c7a6 399d36d 037c7a6 399d36d 037c7a6 399d36d 037c7a6 11f0dcb 3fea55e 606e959 a3e0baa 3fea55e a3e0baa 11f0dcb 1c47239 3fea55e 399d36d a3e0baa 16448c2 399d36d 11f0dcb a3e0baa 11f0dcb 3fea55e 95675e7 a3e0baa 606e959 a3e0baa 6aeacba a3e0baa b6bb234 a3e0baa b6bb234 6aeacba 606e959 7b0fbfe 0731944 7b0fbfe 6c71f04 606e959 6aeacba 2a68ddd a3e0baa 6c71f04 606e959 6c71f04 2a68ddd b6bb234 2a68ddd a3e0baa fb9c37a a3e0baa 8882378 a3e0baa 2a68ddd a3e0baa b6bb234 6aeacba 2a68ddd 6aeacba 037c7a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import os.path
import time
import datetime
from pytz import timezone
import torch
import torch.nn.functional as F
import gradio as gr
import spaces
from x_transformer import *
import tqdm
import TMIDIX
import matplotlib.pyplot as plt
in_space = os.getenv("SYSTEM") == "spaces"
# =================================================================================================
@spaces.GPU
def GenerateMIDI(num_tok, idrums, iinstr):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = time.time()
print('-' * 70)
print('Req num tok:', num_tok)
print('Req instr:', iinstr)
print('Drums:', idrums)
print('-' * 70)
if idrums:
drums = 3074
else:
drums = 3073
instruments_list = ["Piano", "Guitar", "Bass", "Violin", "Cello", "Harp", "Trumpet", "Sax", "Flute", 'Drums',
"Choir", "Organ"]
first_note_instrument_number = instruments_list.index(iinstr)
start_tokens = [3087, drums, 3075 + first_note_instrument_number]
print('Selected Improv sequence:')
print(start_tokens)
print('-' * 70)
output_signature = 'Allegro Music Transformer'
output_file_name = 'Allegro-Music-Transformer-Music-Composition'
track_name = 'Project Los Angeles'
list_of_MIDI_patches = [0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 53, 19, 0, 0, 0, 0]
number_of_ticks_per_quarter = 500
text_encoding = 'ISO-8859-1'
output_header = [number_of_ticks_per_quarter,
[['track_name', 0, bytes(output_signature, text_encoding)]]]
patch_list = [['patch_change', 0, 0, list_of_MIDI_patches[0]],
['patch_change', 0, 1, list_of_MIDI_patches[1]],
['patch_change', 0, 2, list_of_MIDI_patches[2]],
['patch_change', 0, 3, list_of_MIDI_patches[3]],
['patch_change', 0, 4, list_of_MIDI_patches[4]],
['patch_change', 0, 5, list_of_MIDI_patches[5]],
['patch_change', 0, 6, list_of_MIDI_patches[6]],
['patch_change', 0, 7, list_of_MIDI_patches[7]],
['patch_change', 0, 8, list_of_MIDI_patches[8]],
['patch_change', 0, 9, list_of_MIDI_patches[9]],
['patch_change', 0, 10, list_of_MIDI_patches[10]],
['patch_change', 0, 11, list_of_MIDI_patches[11]],
['patch_change', 0, 12, list_of_MIDI_patches[12]],
['patch_change', 0, 13, list_of_MIDI_patches[13]],
['patch_change', 0, 14, list_of_MIDI_patches[14]],
['patch_change', 0, 15, list_of_MIDI_patches[15]],
['track_name', 0, bytes(track_name, text_encoding)]]
output = output_header + [patch_list]
yield output, None, None, [create_msg("visualizer_clear", None)]
print('Loading model...')
SEQ_LEN = 2048
# instantiate the model
model = TransformerWrapper(
num_tokens=3088,
max_seq_len=SEQ_LEN,
attn_layers=Decoder(dim=1024, depth=16, heads=8, attn_flash=True)
)
model = AutoregressiveWrapper(model)
model = torch.nn.DataParallel(model)
model.cuda()
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Allegro_Music_Transformer_Tiny_Trained_Model_80000_steps_0.9457_loss_0.7443_acc.pth',
map_location='cuda'))
print('=' * 70)
model.eval()
print('Done!')
print('=' * 70)
outy = start_tokens
ctime = 0
dur = 0
vel = 90
pitch = 0
channel = 0
for i in range(max(1, min(512, num_tok))):
inp = torch.LongTensor([outy]).cuda()
with torch.amp.autocast(device_type='cuda', dtype=torch.float16):
out = model.module.generate(inp,
1,
temperature=0.9,
return_prime=False,
verbose=False)
out0 = out[0].tolist()
outy.extend(out0)
ss1 = out0[0]
if 0 < ss1 < 256:
ctime += ss1 * 8
if 256 <= ss1 < 1280:
dur = ((ss1 - 256) // 8) * 32
vel = (((ss1 - 256) % 8) + 1) * 15
if 1280 <= ss1 < 2816:
channel = (ss1 - 1280) // 128
pitch = (ss1 - 1280) % 128
event = ['note', ctime, dur, channel, pitch, vel, list_of_MIDI_patches[chanel]]
output[-1].append(event)
midi_data = TMIDIX.score2midi(output, text_encoding)
with open(f"Allegro-Music-Transformer-Music-Composition.mid", 'wb') as f:
f.write(midi_data)
output_plot = TMIDIX.plot_ms_SONG(output, plot_title='Allegro-Music-Transformer-Music-Composition', return_plt=True)
audio = midi_to_colab_audio(new_fn,
soundfont_path="SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2",
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Sample INTs', outy[:16])
print('-' * 70)
print('Last generated MIDI event', output[2][-1])
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (time.time() - start_time), 'sec')
return output_plot, "Allegro-Music-Transformer-Music-Composition.mid", (16000, audio)
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Allegro Music Transformer</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Allegro-Music-Transformer&style=flat)\n\n"
"Full-attention multi-instrumental music transformer featuring asymmetrical encoding with octo-velocity, and chords counters tokens, optimized for speed and performance\n\n"
"Check out [Allegro Music Transformer](https://github.com/asigalov61/Allegro-Music-Transformer) on GitHub!\n\n"
"Special thanks go out to [SkyTNT](https://github.com/SkyTNT/midi-model) for fantastic FluidSynth Synthesizer and MIDI Visualizer code\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/asigalov61/Allegro-Music-Transformer/blob/main/Allegro_Music_Transformer_Composer.ipynb)"
" for faster execution and endless generation"
)
input_drums = gr.Checkbox(label="Add Drums", value=False, info="Add drums to the composition")
input_instrument = gr.Radio(
["Piano", "Guitar", "Bass", "Violin", "Cello", "Harp", "Trumpet", "Sax", "Flute", "Choir", "Organ"],
value="Piano", label="Lead Instrument Controls", info="Desired lead instrument")
input_num_tokens = gr.Slider(16, 512, value=256, label="Number of Tokens", info="Number of tokens to generate")
run_btn = gr.Button("generate", variant="primary")
interrupt_btn = gr.Button("interrupt")
output_plot = gr.Plot(label='output plot')
output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio")
output_midi = gr.File(label="output midi", file_types=[".mid"])
run_event = run_btn.click(GenerateMIDI, [input_num_tokens, input_drums, input_instrument],
[output_plot, output_midi, output_audio])
app.queue().launch() |