Spaces:
Sleeping
Sleeping
File size: 11,300 Bytes
a09a6e6 f30185d c32f3ac f30f5b4 fc374dd 9b18ee8 7d846e2 f30f5b4 c32f3ac f30185d 2bdd873 7d846e2 d6d2726 f30185d f30f5b4 f30185d c32f3ac e7c819a c32f3ac f30f5b4 678899c ba627dd 7de49b3 c159a9f d31062e 51d1628 f30f5b4 2d1c9e3 6a38f13 95ceb1c b288621 b7caaef 678899c 0d0d741 678899c 0d0d741 678899c 0d0d741 7d846e2 d6d2726 7d846e2 c387e2f e2c6c79 c62df5a 7d846e2 678899c c387e2f eb801a5 678899c 038ac8c 35b7079 e7c819a fc18f1c 35b7079 678899c e7c819a 678899c eb801a5 678899c c387e2f 678899c 8975e3e e631c99 7d846e2 b7caaef e9d5218 b7caaef 0ec9df3 d378ca4 2bdd873 f1191ff 2bdd873 f1191ff 63bd7ee 0ec9df3 2bdd873 e9d5218 0ec9df3 e9d5218 b7caaef 7de49b3 a5c6fd6 9b18ee8 a5c6fd6 f30f5b4 678899c f30f5b4 c159a9f 678899c b7caaef 27e7a4c 7d90c27 678899c c62df5a 7d846e2 678899c 7d846e2 678899c 7d846e2 c62df5a b2c9f07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
from turtle import title
import gradio as gr
from transformers import pipeline
import numpy as np
from PIL import Image
from transformers import CLIPProcessor, CLIPModel
import pandas as pd
from glob import glob
import random
from datetime import datetime
import numpy as np
from numpy.random import MT19937
from numpy.random import RandomState, SeedSequence
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
HYPERDIMS = 1024
VALUE_BITS = 8
POS_BITS = 9 # CLIP features are 512 dims
val_bins = np.linspace(start=-1., stop=1., num=2**VALUE_BITS)
print(val_bins.shape, val_bins.min(), val_bins.max(), 'val bins')
def extract_features(image):
PIL_image = Image.fromarray(np.uint8(image)).convert('RGB')
inputs = clip_processor(text=["a photo of a cat", "a photo of a dog"], images=PIL_image, return_tensors="pt", padding=True)
outputs = clip_model(**inputs)
# print(outputs.image_embeds.shape)
return outputs.image_embeds
def update_table(img, img_name, df, state, label, exemplars_state, lut_state):
img_embeds = extract_features(img).detach().numpy().squeeze().tolist()
print(img_name, img.shape, len(img_embeds), 'images left:', len(state))
new_df = pd.DataFrame({'image_name': img_name, 'label': label, 'image_embed': None}, columns=['image_name', 'image_embed', 'label'], index=[0])
# print(new_df)
new_df.at[0, 'image_embed'] = img_embeds
df = pd.concat([df, new_df])
filt = df["image_name"] != ""
df = df[filt]
state.pop()
t = state[-10:]
random.shuffle(t)
state = state[:-10] + t
idx = -1
next_img = state[idx]
preds = predict(extract_features(img).detach().numpy(), exemplars_state, lut_state)
return next_img, next_img, df, state, preds
def update_table_up(img, img_name, df, state, exemplars_state, lut_state):
return update_table(img, img_name, df, state, 1, exemplars_state, lut_state)
def update_table_down(img, img_name, df, state, exemplars_state, lut_state):
return update_table(img, img_name, df, state, 0, exemplars_state, lut_state)
def make_LUT(nvalues, dims, rs):
lut = np.zeros(shape=(nvalues, dims))
lut[0, :] = rs.binomial(n=1, p=0.5, size=(dims))
for row in range(1, nvalues):
lut[row, :] = lut[row-1, :]
# flip few randomly
rand_idx = rs.choice(dims, size=dims//nvalues, replace=False)
lut[row, rand_idx] = 1 - lut[row, rand_idx]
assert np.abs(lut[row, :] - lut[row-1, :]).sum() ==dims//nvalues
unique_rows = np.unique(lut, axis=0)
assert len(unique_rows) == len(lut)
return lut
def load_fn(images, rng_state, exemplars_state, lut_state):
rs = RandomState(MT19937(SeedSequence(123456789)))
rng_state[0] = rs
exemplars_state[0] = rs.binomial(n=1, p=0.5, size=HYPERDIMS)
exemplars_state[1] = rs.binomial(n=1, p=0.5, size=HYPERDIMS)
lut_state[0] = make_LUT(2**VALUE_BITS, HYPERDIMS, rs)
assert lut_state[0].shape[0] == val_bins.shape[0]
lut_state[1] = rs.binomial(n=1, p=0.5, size=(2**POS_BITS, HYPERDIMS))
print(exemplars_state)
print(lut_state[0].shape, lut_state[1].shape)
return images[-1], images[-1], rng_state, exemplars_state, lut_state
def quantize_embeds(embeds):
assert np.all(embeds >= val_bins[0])
assert np.all(embeds <= val_bins[-1])
embeds_flat = embeds.flatten()
all_pairs_dist = np.abs(embeds_flat[:, np.newaxis] - val_bins[np.newaxis, :])
closest_bin = np.argmin(all_pairs_dist, axis=-1)
quantized_embeds_flat = val_bins[closest_bin]
quantized_embeds = np.reshape(quantized_embeds_flat, embeds.shape)
closest_bin = np.reshape(closest_bin, embeds.shape)
print(closest_bin.shape, 'values are in bins', closest_bin.min(), 'to', closest_bin.max())
print('abs quant error avg', np.abs(embeds - quantized_embeds).mean())
return quantized_embeds, closest_bin
def update_exemplars(df, rng, exemplars, lut):
embeds = np.array(df['image_embed'].values.tolist()) # df[['image_embed']].to_numpy()
labels = np.array(df['label'].values.tolist(), 'int')
# print(labels, labels.shape)
assert np.all(np.unique(labels) == [0, 1])
labels_zero_idx = (labels == 0).nonzero()[0]
labels_one_idx = (labels == 1).nonzero()[0]
print(labels_zero_idx.shape, " zeros and ", labels_one_idx.shape, " ones")
# 70-30 split
labels_zero_train_idx = rng[0].choice(labels_zero_idx, size=int(.7 * len(labels_zero_idx)), replace=False)
labels_one_train_idx = rng[0].choice(labels_one_idx, size=int(.7 * len(labels_one_idx)), replace=False)
embeds_train = np.concatenate([embeds[labels_zero_train_idx], embeds[labels_one_train_idx]], axis=0)
labels_train = np.concatenate([labels[labels_zero_train_idx], labels[labels_one_train_idx]], axis=0)
print('Training set ', embeds_train.shape, labels_train.shape)
print(np.sum(labels_train == 0), " zeros and ", np.sum(labels_train == 1).sum(), " ones")
labels_zero_test_idx = np.setdiff1d(labels_zero_idx, labels_zero_train_idx)
labels_one_test_idx = np.setdiff1d(labels_one_idx, labels_one_train_idx)
embeds_test = np.concatenate([embeds[labels_zero_test_idx], embeds[labels_one_test_idx]], axis=0)
labels_test = np.concatenate([labels[labels_zero_test_idx], labels[labels_one_test_idx]], axis=0)
print('Test set ', embeds_test.shape, labels_test.shape)
quantized_embeds, closest_bin = quantize_embeds(embeds_train)
# closest bin is nexample X 512
# lut[0] is nvals X dims
# hd_embeds in nexample x 512 x dims
hd_embeds_per_pos = lut[0][closest_bin]
# bundle along pos dimension 512
# lut[1] is 512 x dims
xor = lambda a,b: a*(1.-b) + b*(1.-a)
hd_embeds = xor(lut[1][np.newaxis, ...], hd_embeds_per_pos)
hd_embeds = np.sum(hd_embeds, axis=1) / embeds_train.shape[-1]
hd_embeds[hd_embeds >= 0.5] = 1.
hd_embeds[hd_embeds < 0.5] = 0.
# hd_embeds_integer is nexample x dims
exemplars_integer = [None, None]
exemplars_integer[0] = np.sum(hd_embeds[labels_train == 0], axis=0)
exemplars_integer[1] = np.sum(hd_embeds[labels_train == 1], axis=0)
exemplars[0] = exemplars_integer[0] / np.sum(labels_train == 0)
exemplars[1] = exemplars_integer[1] / np.sum(labels_train == 1)
exemplars[0][exemplars[0] >= 0.5] = 1.
exemplars[0][exemplars[0] < 0.5] = 0.
exemplars[1][exemplars[1] >= 0.5] = 1.
exemplars[1][exemplars[1] < 0.5] = 0.
print(exemplars[0].shape, exemplars[1].shape, np.abs(exemplars[0] - exemplars[1]).sum())
preds = np.zeros(hd_embeds.shape[0])
dist_to_ex0 = np.abs(hd_embeds - exemplars[0][np.newaxis, ...]).sum(axis=-1)
dist_to_ex1 = np.abs(hd_embeds - exemplars[1][np.newaxis, ...]).sum(axis=-1)
preds[dist_to_ex1 < dist_to_ex0] = 1
print(preds.shape, labels_train.shape, np.sum(preds == labels_train))
train_acc = np.sum(preds == labels_train) / len(labels_train)
rng, test_acc = score(embeds_test, labels_test, rng, exemplars, lut)
return rng, exemplars, train_acc, test_acc
def score(embeds, labels, rng, exemplars, lut):
quantized_embeds, closest_bin = quantize_embeds(embeds)
# closest bin is nexample X 512
# lut[0] is nvals X dims
# hd_embeds in nexample x 512 x dims
hd_embeds_per_pos = lut[0][closest_bin]
# bundle along pos dimension 512
# lut[1] is 512 x dims
xor = lambda a,b: a*(1.-b) + b*(1.-a)
hd_embeds = xor(lut[1][np.newaxis, ...], hd_embeds_per_pos)
hd_embeds = np.sum(hd_embeds, axis=1) / embeds.shape[-1]
hd_embeds[hd_embeds >= 0.5] = 1.
hd_embeds[hd_embeds < 0.5] = 0.
# hd_embeds_integer is nexample x dims
print(exemplars[0].shape, exemplars[1].shape, np.abs(exemplars[0] - exemplars[1]).sum())
preds = np.zeros(hd_embeds.shape[0])
dist_to_ex0 = np.abs(hd_embeds - exemplars[0][np.newaxis, ...]).sum(axis=-1)
dist_to_ex1 = np.abs(hd_embeds - exemplars[1][np.newaxis, ...]).sum(axis=-1)
preds[dist_to_ex1 < dist_to_ex0] = 1
print(preds.shape, labels.shape, np.sum(preds == labels), len(labels))
acc = np.sum(preds == labels) / len(labels)
return rng, acc
def predict(embeds, exemplars, lut):
quantized_embeds, closest_bin = quantize_embeds(embeds)
# closest bin is nexample X 512
# lut[0] is nvals X dims
# hd_embeds in nexample x 512 x dims
hd_embeds_per_pos = lut[0][closest_bin]
# bundle along pos dimension 512
# lut[1] is 512 x dims
xor = lambda a,b: a*(1.-b) + b*(1.-a)
hd_embeds = xor(lut[1][np.newaxis, ...], hd_embeds_per_pos)
hd_embeds = np.sum(hd_embeds, axis=1) / embeds.shape[-1]
hd_embeds[hd_embeds >= 0.5] = 1.
hd_embeds[hd_embeds < 0.5] = 0.
# hd_embeds_integer is nexample x dims
# print(exemplars[0].shape, exemplars[1].shape, np.abs(exemplars[0] - exemplars[1]).sum())
dist_to_ex0 = np.abs(hd_embeds - exemplars[0][np.newaxis, ...]).sum(axis=-1)
dist_to_ex1 = np.abs(hd_embeds - exemplars[1][np.newaxis, ...]).sum(axis=-1)
print('dists', dist_to_ex0, dist_to_ex1)
odds = np.abs(dist_to_ex0 - dist_to_ex1).item()
if dist_to_ex1 < dist_to_ex0:
preds = np.array([1., odds])
else:
preds = np.array([odds, 1.])
print(preds)
# preds = np.array([-1. * dist_to_ex0, -1. * dist_to_ex1])
preds = preds / preds.sum()
# print(preds.shape)
print(preds)
return {"๐": preds[1], "๐": preds[0]}
with gr.Blocks(title="End-User Personalization") as demo:
img_list = glob('images/**/*.jpg')
random.seed(datetime.now().timestamp())
random.shuffle(img_list)
images = gr.State(img_list)
# start_button = gr.Button(label="Start")
with gr.Row():
image_display = gr.Image()
with gr.Column():
image_fname = gr.Textbox()
preds = gr.Label("Prediction")
# text_display = gr.Text()
with gr.Row():
upvote = gr.Button("๐")
downvote = gr.Button("๐")
personalize = gr.Button("Personalize")
with gr.Row():
train_acc = gr.Textbox(label="Train accuracy")
test_acc = gr.Textbox(label="Test accuracy")
annotated_samples = gr.Dataframe(headers=['image_name', 'label', 'image_embed'], row_count=(1, 'dynamic'),
col_count=(3, 'fixed'), label='Annotations', wrap=False)
# HD stuff for incremental updates
rng = gr.State([None])
exemplars_state = gr.State([None, None])
exemplars_state_integer = gr.State([None, None])
lut_state = gr.State([None, None])
upvote.click(update_table_up, inputs=[image_display, image_fname, annotated_samples, images, exemplars_state, lut_state], outputs=[image_display, image_fname, annotated_samples, images, preds])
downvote.click(update_table_down, inputs=[image_display, image_fname, annotated_samples, images, exemplars_state, lut_state], outputs=[image_display, image_fname, annotated_samples, images, preds])
personalize.click(update_exemplars, [annotated_samples, rng, exemplars_state, lut_state], [rng, exemplars_state, train_acc, test_acc])
demo.load(load_fn, inputs=[images, rng, exemplars_state, lut_state], outputs=[image_display, image_fname, rng, exemplars_state, lut_state])
demo.launch(show_error=True, debug=True) |