File size: 1,046 Bytes
5735646
 
 
 
 
 
 
 
 
 
 
 
9a5d1a1
 
5735646
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import gradio as gr
import numpy as np

longitude = gr.Number(label = "longitude")
latitude = gr.Number(label = "latitude")
housing_median_age = gr.Slider(1, 100, step=1, label = "housing_median_age")
total_rooms = gr.Dropdown([2, 3, 4, 5, 6, 7, 8, 9, 10], label = "total_rooms")
total_bedrooms = gr.Radio([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], label = "total_bedrooms")
population = gr.Number(label = "population")
households = gr.Number(label = "households")
median_income = gr.Number(label = "median_income")

median_house_value = gr.Number(label = "median_house_value")

def housing_price_predictor(input1, input2, input3, input4, input5, input6, input7, input8):
    output1 = np.random.randint(140000, 400000) # image-like array output example
    return output1

gr.Interface(fn=housing_price_predictor, 
             inputs=[longitude, latitude, housing_median_age,
                     total_rooms, total_bedrooms, population,
                     households, median_income], 
             outputs=[median_house_value]
            ).launch()