File size: 9,383 Bytes
49c30f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import streamlit as st
st.title("Generative AI Resources")
st.header("Generative AI & LLMs")
st.write("The collection of resources to learn about GenAI.")
st.subheader("Introduction to GenAI")
st.markdown("""
1. Generative AI learning path by Google: [link](https://www.cloudskillsboost.google/journeys/118)
""")
st.subheader("Learn about LLMs")
st.markdown("""
Keywords: [LLMs, Fine-Tuning, Text Embeddings, Transformers, Attention, Self-Attenion, Multi-head Attention, Foundation Models, Pre-Training, RLHF, Deep Neural
Networks, Task-Specific Models]
1. LLM Bootcamp [link](https://fullstackdeeplearning.com/llm-bootcamp/spring-2023/")
2. Cohere: LLM University [link](https://docs.cohere.com/docs/llmu")
3. Coursera/Generative AI with LLMS [link](https://www.coursera.org/learn/generative-ai-with-llms/)
4. OpenAI Cookbook [link](https://platform.openai.com/docs/introduction)
5. LLM Interfaces [link](https://scifilogic.com/interface-for-running-local-llm/)
6. Stanford AI Index Report [link](https://aiindex.stanford.edu/report/)
""")
st.subheader("Prompt Engineering")
st.write("""
Keywords: [Prompting, Prompt Engineering, Prompt Design, Prompt Injection/Jailbreaking, Prompt Tuning, Prompt Drifting, Prompt Patterns,
System Prompt, Prompt Template, Zero-Shot/One-Shot/Few-Shot, Chain-of-Thought Prompting, RAG (Retrieval Augmented Generation), APE (Automatic Prompt
Engineer), Tree of Thoughts (ToT), Adversarial Prompting, Waterfall prompting]
""")
st.markdown("""
1. Coursera/Prompt Engineering for ChatGPT [link](https://www.coursera.org/learn/prompt-engineering)
2. Cohere/Constructing Prompts for the Command Model [link](https://txt.cohere.com/constructing-prompts/)
3. Cohere/Command Model Use Case Patterns [link](https://txt.cohere.com/command-usecase-patterns/)
4. DeepLearning/ChatGPT Prompt Engineering for Developers [link](https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/)
5. Cohere/Prompt Engineering [link](https://docs.cohere.com/docs/model-prompting)
6. Learn Prompting [link](https://learnprompting.org/)
7. Prompt Engineering Guide [link](https://www.promptingguide.ai/)
8. Udemy: ChatGPT Complete Guide [link](https://www.udemy.com/course/complete-ai-guide/)
9. Prompt Tips by IBM [link](https://www.ibm.com/docs/en/watsonx?topic=models-prompt-tips)
10. 12 PE Techniques [link](https://cobusgreyling.medium.com/12-prompt-engineering-techniques-644481c857aa)
11. Understanding prompts, completions, and tokens [link](https://subscription.packtpub.com/book/data/9781800563193/2/ch02lvl1sec06/understanding-prompts-completions-and-tokens)
12. Text Generation (HF) [link](https://huggingface.co/tasks/text-generation)
13. Prompt Engineering for Effective Interaction with ChatGPT [link](https://machinelearningmastery.com/prompt-engineering-for-effective-interaction-with-chatgpt/)
14. A Complete Introduction to Prompt Engineering For Large Language Models [link](https://www.mihaileric.com/posts/a-complete-introduction-to-prompt-engineering/)
15. Awesome ChatGPT Prompts [link](https://github.com/f/awesome-chatgpt-prompts)
16. Prompt Engineering Guide: How to Engineer the Perfect Prompts [link](https://richardbatt.co.uk/prompt-engineering-guide-how-to-engineer-the-perfect-prompts/)
17. Prompt Variables and Definitions GoogleDoc[link](https://docs.google.com/document/d/1KRo_ccokECGg-cbCYwHzLgaAJFpNLL8Xu1ZWjb4LWAU/edit)
18. 10 Essential Prompt Engineering Methods [link](https://www.topbots.com/prompt-engineering-chatgpt-llm-applications/)
19. Mastering Generative AI and Prompt Engineering: [link](https://s3.eu-central-1.amazonaws.com/up.raindrop.io/raindrop/files/623/017/898/Mastering_Generative_AI_and_Prompt_Engineering_230808_115249.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIAZWICFKR6VEFG7UJT%2F20230808%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20230808T220803Z&X-Amz-Expires=1800&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEO3%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaDGV1LWNlbnRyYWwtMSJIMEYCIQDLpx1IJMkqiTN60IOb4rcuJEaISYkR2tXwjNazse0UngIhAJNfz7SWIckcECvJEWRCLcRidfBSWK5HCAedCyKDpKwGKoEECJb%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEQABoMNjY2MjYxMzQ1NDA1IgxpfjieHhFAElmqZOQq1QMQe0fqu1LXGixZQ6Tn7xeJc9BBtolNLZ0WAKWa%2F5S01NNjbcHq5NEUSPzCwsvyCSf64cF7aGtI3GhSjbNIctcLxvmLJG%2B3gAlLu6WiCTHiKDEg3uD1WrrGV%2F1qaS0uOgz1ZOcvNgoEm6NSHslSPS90CvPlqZ0gKrAUY2GoBWUGDq2eZmGWSDgpdFufjK%2BwiOG9RDaKY1nqfQ3ihih42WHexurp81JzOmpOz014Vpc7O55LnVwqxDFhUCGOsQIARc8dHc3gzuSoIbYwlhaaDswVtcfrF%2FMUPOQ94W08QPnbLFKwkl8j1TJSHxicbqQmY8FUIKJmWXMzkAGz3qU9SiukcFtfpHIFZvEVmIL8mgVXKfO%2F5hsVoxAmpDGwXOJjyjMg3TFVvL%2FcaD1qK5pbdRYhSxjRPKKqE%2FOkXXNTkUauh%2F1TZ2OoZRaZVlxYA1x4UiMmDVaiDy6fkcBDxUUOldq3XmA1xIEr9QqaJfsGajfouENahFPlBP58%2B139bLo9A6Oqv3tuYbaATtogI8pfmID6hdmuLBHQoXZBhdJ3dxXTLW0Y8fquRB4KU9c99596agpn8%2FHgaicSQnTAplh6t6oj4wApEWJn3JS%2BdgBzMryOMkA9XXznMN7KyqYGOqQBTNVcqOk%2FpeEezP6XLp9iD608k8ceWjrYMNsVM3hsRmcI8kJMMGK6BPiZrZv0Mzvz94ap6hHyYSYdeJ3YAKAKa3ZcZ9AcFQqWwXFWuGzH6UsGWP71VIEBeflPf1%2FTFjzGO75TKV29WMhY4ciFMAwLWRs74g%2BOrgscBNkmqDFnK%2B1Tw56Cse8OVhd1CwkbvFhYEX7DPF%2Bojl3f0DKHNQom8XdT9zA%3D&X-Amz-Signature=dfa2113f1cdecba590d32e05fb4e4e18da52ce1c5e698c07253ea94f29ffcaa7&X-Amz-SignedHeaders=host&x-id=GetObject)
Limitations:
1. Against LLM maximalism [link](https://explosion.ai/blog/against-llm-maximalism)
2. A Categorical Archive of ChatGPT Failures [link](https://medium.com/@aliborji/a-categorical-archive-of-chatgpt-failures-2c888805d3c3)
3. 10 Essential Prompt Engineering Methods [link](https://www.topbots.com/prompt-engineering-chatgpt-llm-applications/)
""")
st.subheader("GenAI Tools")
st.markdown("""
Chat Interfaces:
1. ChatGPT [link](https://chat.openai.com/)
2. Claude [link](https://claude.ai/)
3. Perplexity LLama: [link](https://labs.perplexity.ai/)
4. OoBabooga Web UI (diy) [link](https://github.com/oobabooga/text-generation-webui)
5. Vercel Model Comparison [link](https://sdk.vercel.ai/prompt)
Front-End:
1. Databutton [link](https://www.databutton.io/)
2. Streamlit [link]()
3. Gradio [link]()
Prompt Engineering:
1. Vercel AI Prompt [link](https://sdk.vercel.ai/prompt)
Frameworks:
1. LangChain
2. LlamaIndex
Agents:
1. Baby AGI
2. Auto GPT
""")
st.subheader("AI Ethics")
st.markdown("""
Keywords: [Responsible AI, Constitutional AI, Data Ethics, Bias, Carbon Footprint, AI Guardrails, Sampling Bias]
1. MS Responsible AI Standard: [link](https://blogs.microsoft.com/wp-content/uploads/prod/sites/5/2022/06/Microsoft-Responsible-AI-Standard-v2-General-Requirements-3.pdf)
2. Compliance: SOC 2
3. Anthropic/Constitutional AI: [link to paper](https://arxiv.org/pdf/2212.08073.pdf)
4. Should we trust web scraped data? [link to paper](https://arxiv.org/pdf/2308.02231.pdf)
5. Open Voice Network [link](https://openvoicenetwork.org/)
""")
st.subheader("People to follow")
st.markdown("""
1. Andrew Ng - Coursera/DeepLearning.ai
2. Harrison Chase - LangChain Founder
3. Luis Serrano [link](https://serrano.academy/)
""")
st.subheader("Models")
st.markdown("""
1. OpenAI - GPT-3.5/GPT-4 - ChatGPT
2. Google - ?? - Bard
3. Anthropic - Claude2 - Claude
4. Cohere - Coral
5. Meta - Lambda - ??
6. HuggingFace - ??
7. AI21 Studio - Jurassic-2 [link](https://www.ai21.com/)
8. OpenAssistant [link](https://open-assistant.io/)
""")
st.subheader("Training & Evaluation")
st.markdown("""
1. HuggingFace/LLM Leadership Board [link](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
2. Stanford/Evaluating LLMs Paper [link](https://stanford-cs324.github.io/winter2022/projects/CS324_P1.pdf)
3. Prolific [link](https://www.prolific.co/)
""")
st.subheader("Case Studies")
st.markdown("""
1. AI21 Case Studies: [link](https://www.ai21.com/category/case-study)
""")
st.header("Conversational AI & Chatbots")
st.subheader("Live Chatbots Collection")
st.markdown("""
1. HP Virtual Agent [link](https://virtualagent.hpcloud.hp.com/)
2. Vodafone - TOBi [link](https://www.vodafone.co.uk/contact-us/)
3. CDI Global - Cee [link](https://cdisglobal.com/)
4. Bank of America - Erica [link](https://promotions.bankofamerica.com/digitalbanking/mobilebanking/erica)
""")
st.subheader("Conversational Banking")
st.markdown("""
1. Action AI [link1](https://action.ai/banking-in-the-metaverse/), [link2](https://action.ai/banking/), [link3](https://action.ai/the-good-the-bad-and-bank-branch-closures/)
2. Aimultiple [link](https://research.aimultiple.com/conversational-banking/)
3. Sinch [link](https://www.sinch.com/blog/conversational-banking/)
""")
st.subheader("Other")
st.markdown("""
1. Chatbot Metrics/KPIs/OKRs
2. Chatbot Localisation/Multi-language chatbots
3. Conversation Design
4. Tools: DialogFlow, Microsoft Bot Framework, IBM Watson;
5. Channels: Web, Messangers, Telephony.
6. Cases: [CDI Global](https://cdisglobal.com/cases/)
7. Cases [Boost AI](https://www.boost.ai/case-studies)
8. Cases [Kore AI](https://kore.ai/chatbot-case-studies/)
9. Cases [Poly AI](https://poly.ai/case-studies/)
10. Initial Model of Trust in Chatbots [link](https://www.duo.uio.no/bitstream/handle/10852/74147/An+initial+model+of+trust+in+chatbots+for+customer+service+-+authors+version.pdf?sequence=1)
11. Stanford NLP Course [link](https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rOSH4v6133s9LFPRHjEmbmJ&index=1&ab_channel=StanfordOnline)
""")
st.markdown('***')
st.markdown("Move to Furo: [link](https://pradyunsg.me/furo/reference/admonitions/)") |