File size: 9,605 Bytes
6a89fbe
ca4171a
 
4f10488
7fe0ea6
a48f2db
7fe0ea6
42d40cd
6a89fbe
 
 
 
68b6b17
a48f2db
 
 
cca4ece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a48f2db
68b6b17
 
 
 
 
4f10488
0f80297
4f10488
 
 
 
 
 
 
 
 
68b6b17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca4171a
7fe0ea6
 
a48f2db
6886461
 
 
 
7fe0ea6
 
 
 
 
 
 
 
ca4171a
 
 
 
68b6b17
42d40cd
 
68b6b17
42d40cd
 
68b6b17
7fe0ea6
6886461
cca4ece
 
b47aba9
7fe0ea6
 
cca4ece
 
 
 
 
 
b47aba9
cca4ece
 
b47aba9
 
 
 
a48f2db
cca4ece
9811800
7fe0ea6
9811800
7fe0ea6
a48f2db
7fe0ea6
 
a48f2db
 
cca4ece
 
b47aba9
a48f2db
 
cca4ece
 
 
 
 
 
 
 
 
 
 
 
 
b47aba9
 
a48f2db
cca4ece
9811800
a48f2db
9811800
a48f2db
 
7fe0ea6
 
 
 
 
9811800
7fe0ea6
 
 
68b6b17
 
9811800
42d40cd
 
 
 
 
6a89fbe
9811800
42d40cd
 
7fe0ea6
 
 
 
42d40cd
 
 
 
7fe0ea6
 
 
42d40cd
 
 
 
68b6b17
4f10488
 
2d37288
4f10488
 
2d37288
0f80297
 
a48f2db
9811800
a48f2db
 
 
0f80297
 
 
9e50168
9811800
6a89fbe
 
9811800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a89fbe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import numpy as np
import pandas as pd
import streamlit as st
from streamlit_text_rating.st_text_rater import st_text_rater
from transformers import AutoTokenizer,AutoModelForSequenceClassification
import onnxruntime as ort
import os
import time
import plotly.express as px
import plotly.graph_objects as go
global _plotly_config
_plotly_config={'displayModeBar': False}

from sentiment_clf_helper import classify_sentiment,create_onnx_model_sentiment,classify_sentiment_onnx
from zeroshot_clf_helper import zero_shot_classification,create_onnx_model_zs,zero_shot_classification_onnx

import yaml
def read_yaml(file_path):
    with open(file_path, "r") as f:
        return yaml.safe_load(f)

config = read_yaml('config.yaml')

sent_chkpt=config['SENTIMENT_CLF']['sent_chkpt']
sent_mdl_dir=config['SENTIMENT_CLF']['sent_mdl_dir']
sent_onnx_mdl_dir=config['SENTIMENT_CLF']['sent_onnx_mdl_dir']
sent_onnx_mdl_name=config['SENTIMENT_CLF']['sent_onnx_mdl_name']
sent_onnx_quant_mdl_name=config['SENTIMENT_CLF']['sent_onnx_quant_mdl_name']

zs_chkpt=config['ZEROSHOT_CLF']['zs_chkpt']
zs_mdl_dir=config['ZEROSHOT_CLF']['zs_mdl_dir']
zs_onnx_mdl_dir=config['ZEROSHOT_CLF']['zs_onnx_mdl_dir']
zs_onnx_mdl_name=config['ZEROSHOT_CLF']['zs_onnx_mdl_name']
zs_onnx_quant_mdl_name=config['ZEROSHOT_CLF']['zs_onnx_quant_mdl_name']


st.set_page_config(  # Alternate names: setup_page, page, layout
    layout="wide",  # Can be "centered" or "wide". In the future also "dashboard", etc.
    initial_sidebar_state="auto",  # Can be "auto", "expanded", "collapsed"
    page_title='None',  # String or None. Strings get appended with "• Streamlit".
)


padding_top = 0
st.markdown(f"""
    <style>
        .reportview-container .main .block-container{{
            padding-top: {padding_top}rem;
        }}
    </style>""",
    unsafe_allow_html=True,
)

def set_page_title(title):
    st.sidebar.markdown(unsafe_allow_html=True, body=f"""
        <iframe height=0 srcdoc="<script>
            const title = window.parent.document.querySelector('title') \

            const oldObserver = window.parent.titleObserver
            if (oldObserver) {{
                oldObserver.disconnect()
            }} \

            const newObserver = new MutationObserver(function(mutations) {{
                const target = mutations[0].target
                if (target.text !== '{title}') {{
                    target.text = '{title}'
                }}
            }}) \

            newObserver.observe(title, {{ childList: true }})
            window.parent.titleObserver = newObserver \

            title.text = '{title}'
        </script>" />
    """)


set_page_title('NLP use cases')

# Hide Menu Option
hide_streamlit_style = """
            <style>
            #MainMenu {visibility: hidden;}
            footer {visibility: hidden;}
            </style>
            """
st.markdown(hide_streamlit_style, unsafe_allow_html=True)


@st.cache(allow_output_mutation=True, suppress_st_warning=True, max_entries=None, ttl=None)
def create_model_dir(chkpt, model_dir):
    if not os.path.exists(model_dir):
        try:
            os.mkdir(path=model_dir)
        except:
            pass
        _model = AutoModelForSequenceClassification.from_pretrained(chkpt)
        _tokenizer = AutoTokenizer.from_pretrained(chkpt)
        _model.save_pretrained(model_dir)
        _tokenizer.save_pretrained(model_dir)
    else:
        pass


st.title("NLP use cases")

with st.sidebar:
    st.title("NLP tasks")
    select_task=st.selectbox(label="Select task from drop down menu",
                 options=['README',
                          'Detect Sentiment','Zero Shot Classification'])

if select_task=='README':
    st.header("NLP Summary")

############### Pre-Download & instantiate objects for sentiment analysis *********************** START **********************

# #create model/token dir for sentiment classification for faster inference
# create_model_dir(chkpt=sent_chkpt, model_dir=sent_mdl_dir)


@st.cache(allow_output_mutation=True, suppress_st_warning=True, max_entries=None, ttl=None)
def sentiment_task_selected(task,
                            sent_chkpt=sent_chkpt,
                            sent_mdl_dir=sent_mdl_dir,
                            sent_onnx_mdl_dir=sent_onnx_mdl_dir,
                            sent_onnx_mdl_name=sent_onnx_mdl_name,
                            sent_onnx_quant_mdl_name=sent_onnx_quant_mdl_name):
    #model & tokenizer initialization for normal sentiment classification
    model_sentiment=AutoModelForSequenceClassification.from_pretrained(sent_chkpt)
    tokenizer_sentiment=AutoTokenizer.from_pretrained(sent_chkpt)

    # create onnx model for sentiment classification
    create_onnx_model_sentiment(_model=model_sentiment, _tokenizer=tokenizer_sentiment)

    #create inference session
    sentiment_session = ort.InferenceSession(f"{sent_onnx_mdl_dir}/{sent_onnx_mdl_name}")
    # sentiment_session_quant = ort.InferenceSession(f"{sent_onnx_mdl_dir}/{sent_onnx_quant_mdl_name}")

    return model_sentiment,tokenizer_sentiment,sentiment_session

############## Pre-Download & instantiate objects for sentiment analysis ********************* END **********************************


############### Pre-Download & instantiate objects for Zero shot clf *********************** START **********************

# # create model/token dir for zeroshot clf
# create_model_dir(chkpt=zs_chkpt, model_dir=zs_mdl_dir)


@st.cache(allow_output_mutation=True, suppress_st_warning=True, max_entries=None, ttl=None)
def zs_task_selected(task,
                     zs_chkpt=zs_chkpt ,
                     zs_mdl_dir=zs_mdl_dir,
                     zs_onnx_mdl_dir=zs_onnx_mdl_dir,
                     zs_onnx_mdl_name=zs_onnx_mdl_name,
                     zs_onnx_quant_mdl_name=zs_onnx_quant_mdl_name):

    ##model & tokenizer initialization for normal ZS classification
    # model_zs=AutoModelForSequenceClassification.from_pretrained(zs_chkpt)
    # we just need tokenizer for inference and not model since onnx model is already saved
    tokenizer_zs=AutoTokenizer.from_pretrained(zs_chkpt)

    # create onnx model for zeroshot
    create_onnx_model_zs()

    #create inference session from onnx model
    zs_session = ort.InferenceSession(f"{zs_onnx_mdl_dir}/{zs_onnx_mdl_name}")
    # zs_session_quant = ort.InferenceSession(f"{zs_onnx_mdl_dir}/{zs_onnx_quant_mdl_name}")

    return tokenizer_zs,zs_session

############## Pre-Download & instantiate objects for Zero shot analysis ********************* END **********************************


if select_task == 'Detect Sentiment':
    t1=time.time()
    model_sentiment,tokenizer_sentiment,\
    sentiment_session = sentiment_task_selected(task=select_task)
    t2 = time.time()
    st.write(f"Total time to load Model is {(t2-t1)*1000:.1f} ms")

    st.header("You are now performing Sentiment Analysis")
    input_texts = st.text_input(label="Input texts separated by comma")
    c1,c2,_,_=st.columns(4)

    with c1:
        response1=st.button("Normal runtime")
    with c2:
        response2=st.button("ONNX runtime")

    if any([response1,response2]):
        if response1:
            start=time.time()
            sentiments = classify_sentiment(input_texts,
                                            model=model_sentiment,
                                            tokenizer=tokenizer_sentiment
                                            )
            end=time.time()
            st.write(f"Time taken for computation {(end-start)*1000:.1f} ms")
        elif response2:
            start = time.time()
            sentiments=classify_sentiment_onnx(input_texts,
                                               _session=sentiment_session,
                                               _tokenizer=tokenizer_sentiment)
            end = time.time()
            st.write(f"Time taken for computation {(end - start) * 1000:.1f} ms")
        else:
            pass
        for i,t in enumerate(input_texts.split(',')):
            if sentiments[i]=='Positive':
                response=st_text_rater(t + f"--> This statement is {sentiments[i]}",
                                       color_background='rgb(154,205,50)',key=t)
            else:
                response = st_text_rater(t + f"--> This statement is {sentiments[i]}",
                                         color_background='rgb(233, 116, 81)',key=t)

if select_task=='Zero Shot Classification':
    t1=time.time()
    tokenizer_zs,zs_session = zs_task_selected(task=select_task)
    t2 = time.time()
    st.write(f"Total time to load Model is {(t2-t1)*1000:.1f} ms")

    st.header("You are now performing Zero Shot Classification")
    input_texts = st.text_input(label="Input text to classify into topics")
    input_lables = st.text_input(label="Enter labels separated by commas")

    c1,_,_,_=st.columns(4)

    with c1:
        response1=st.button("Compute with ONNX runtime")

    if response1:
        start = time.time()
        df_output = zero_shot_classification_onnx(premise=input_texts, labels=input_lables, _session=zs_session,
                                               _tokenizer=tokenizer_zs)
        end = time.time()
        st.write("")
        st.write(f"Time taken for computation {(end-start)*1000:.1f} ms")
        fig = px.bar(x='Probability',
                     y='labels',
                     text='Probability',
                     data_frame=df_output,
                     title='Zero Shot Normalized Probabilities')

        st.plotly_chart(fig, config=_plotly_config)
    else:
        pass