File size: 15,831 Bytes
5bb42f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import base64
import io
import re
import time
from datetime import date
from pathlib import Path

import gradio as gr
import requests
import torch
from PIL import Image

from modules import shared
from modules.models import reload_model, unload_model
from modules.ui import create_refresh_button

torch._C._jit_set_profiling_mode(False)

# parameters which can be customized in settings.json of webui
params = {
    'address': 'http://127.0.0.1:7860',
    'mode': 0,  # modes of operation: 0 (Manual only), 1 (Immersive/Interactive - looks for words to trigger), 2 (Picturebook Adventure - Always on)
    'manage_VRAM': False,
    'save_img': False,
    'SD_model': 'NeverEndingDream',  # not used right now
    'prompt_prefix': '(Masterpiece:1.1), detailed, intricate, colorful',
    'negative_prompt': '(worst quality, low quality:1.3)',
    'width': 512,
    'height': 512,
    'denoising_strength': 0.61,
    'restore_faces': False,
    'enable_hr': False,
    'hr_upscaler': 'ESRGAN_4x',
    'hr_scale': '1.0',
    'seed': -1,
    'sampler_name': 'DPM++ 2M Karras',
    'steps': 32,
    'cfg_scale': 7,
    'textgen_prefix': 'Please provide a detailed and vivid description of [subject]',
    'sd_checkpoint': ' ',
    'checkpoint_list': [" "]
}


def give_VRAM_priority(actor):
    global shared, params

    if actor == 'SD':
        unload_model()
        print("Requesting Auto1111 to re-load last checkpoint used...")
        response = requests.post(url=f'{params["address"]}/sdapi/v1/reload-checkpoint', json='')
        response.raise_for_status()

    elif actor == 'LLM':
        print("Requesting Auto1111 to vacate VRAM...")
        response = requests.post(url=f'{params["address"]}/sdapi/v1/unload-checkpoint', json='')
        response.raise_for_status()
        reload_model()

    elif actor == 'set':
        print("VRAM mangement activated -- requesting Auto1111 to vacate VRAM...")
        response = requests.post(url=f'{params["address"]}/sdapi/v1/unload-checkpoint', json='')
        response.raise_for_status()

    elif actor == 'reset':
        print("VRAM mangement deactivated -- requesting Auto1111 to reload checkpoint")
        response = requests.post(url=f'{params["address"]}/sdapi/v1/reload-checkpoint', json='')
        response.raise_for_status()

    else:
        raise RuntimeError(f'Managing VRAM: "{actor}" is not a known state!')

    response.raise_for_status()
    del response


if params['manage_VRAM']:
    give_VRAM_priority('set')

SD_models = ['NeverEndingDream']  # TODO: get with http://{address}}/sdapi/v1/sd-models and allow user to select

picture_response = False  # specifies if the next model response should appear as a picture


def remove_surrounded_chars(string):
    # this expression matches to 'as few symbols as possible (0 upwards) between any asterisks' OR
    # 'as few symbols as possible (0 upwards) between an asterisk and the end of the string'
    return re.sub('\*[^\*]*?(\*|$)', '', string)


def triggers_are_in(string):
    string = remove_surrounded_chars(string)
    # regex searches for send|main|message|me (at the end of the word) followed by
    # a whole word of image|pic|picture|photo|snap|snapshot|selfie|meme(s),
    # (?aims) are regex parser flags
    return bool(re.search('(?aims)(send|mail|message|me)\\b.+?\\b(image|pic(ture)?|photo|snap(shot)?|selfie|meme)s?\\b', string))


def state_modifier(state):
    if picture_response:
        state['stream'] = False

    return state


def input_modifier(string):
    """
    This function is applied to your text inputs before
    they are fed into the model.
    """

    global params

    if not params['mode'] == 1:  # if not in immersive/interactive mode, do nothing
        return string

    if triggers_are_in(string):  # if we're in it, check for trigger words
        toggle_generation(True)
        string = string.lower()
        if "of" in string:
            subject = string.split('of', 1)[1]  # subdivide the string once by the first 'of' instance and get what's coming after it
            string = params['textgen_prefix'].replace("[subject]", subject)
        else:
            string = params['textgen_prefix'].replace("[subject]", "your appearance, your surroundings and what you are doing right now")

    return string

# Get and save the Stable Diffusion-generated picture
def get_SD_pictures(description, character):

    global params

    if params['manage_VRAM']:
        give_VRAM_priority('SD')

    payload = {
        "prompt": params['prompt_prefix'] + description,
        "seed": params['seed'],
        "sampler_name": params['sampler_name'],
        "enable_hr": params['enable_hr'],
        "hr_scale": params['hr_scale'],
        "hr_upscaler": params['hr_upscaler'],
        "denoising_strength": params['denoising_strength'],
        "steps": params['steps'],
        "cfg_scale": params['cfg_scale'],
        "width": params['width'],
        "height": params['height'],
        "restore_faces": params['restore_faces'],
        "override_settings_restore_afterwards": True,
        "negative_prompt": params['negative_prompt']
    }

    print(f'Prompting the image generator via the API on {params["address"]}...')
    response = requests.post(url=f'{params["address"]}/sdapi/v1/txt2img', json=payload)
    response.raise_for_status()
    r = response.json()

    visible_result = ""
    for img_str in r['images']:
        if params['save_img']:
            img_data = base64.b64decode(img_str)

            variadic = f'{date.today().strftime("%Y_%m_%d")}/{character}_{int(time.time())}'
            output_file = Path(f'extensions/sd_api_pictures/outputs/{variadic}.png')
            output_file.parent.mkdir(parents=True, exist_ok=True)

            with open(output_file.as_posix(), 'wb') as f:
                f.write(img_data)

            visible_result = visible_result + f'<img src="/file/extensions/sd_api_pictures/outputs/{variadic}.png" alt="{description}" style="max-width: unset; max-height: unset;">\n'
        else:
            image = Image.open(io.BytesIO(base64.b64decode(img_str.split(",", 1)[0])))
            # lower the resolution of received images for the chat, otherwise the log size gets out of control quickly with all the base64 values in visible history
            image.thumbnail((300, 300))
            buffered = io.BytesIO()
            image.save(buffered, format="JPEG")
            buffered.seek(0)
            image_bytes = buffered.getvalue()
            img_str = "data:image/jpeg;base64," + base64.b64encode(image_bytes).decode()
            visible_result = visible_result + f'<img src="{img_str}" alt="{description}">\n'

    if params['manage_VRAM']:
        give_VRAM_priority('LLM')

    return visible_result

# TODO: how do I make the UI history ignore the resulting pictures (I don't want HTML to appear in history)
# and replace it with 'text' for the purposes of logging?
def output_modifier(string, state):
    """
    This function is applied to the model outputs.
    """

    global picture_response, params

    if not picture_response:
        return string

    string = remove_surrounded_chars(string)
    string = string.replace('"', '')
    string = string.replace('“', '')
    string = string.replace('\n', ' ')
    string = string.strip()

    if string == '':
        string = 'no viable description in reply, try regenerating'
        return string

    text = ""
    if (params['mode'] < 2):
        toggle_generation(False)
        text = f'*Sends a picture which portrays: “{string}”*'
    else:
        text = string

    string = get_SD_pictures(string, state['character_menu']) + "\n" + text

    return string


def bot_prefix_modifier(string):
    """
    This function is only applied in chat mode. It modifies
    the prefix text for the Bot and can be used to bias its
    behavior.
    """

    return string


def toggle_generation(*args):
    global picture_response, shared

    if not args:
        picture_response = not picture_response
    else:
        picture_response = args[0]

    shared.processing_message = "*Is sending a picture...*" if picture_response else "*Is typing...*"


def filter_address(address):
    address = address.strip()
    # address = re.sub('http(s)?:\/\/|\/$','',address) # remove starting http:// OR https:// OR trailing slash
    address = re.sub('\/$', '', address)  # remove trailing /s
    if not address.startswith('http'):
        address = 'http://' + address
    return address


def SD_api_address_update(address):
    global params

    msg = "✔️ SD API is found on:"
    address = filter_address(address)
    params.update({"address": address})
    try:
        response = requests.get(url=f'{params["address"]}/sdapi/v1/sd-models')
        response.raise_for_status()
        # r = response.json()
    except:
        msg = "❌ No SD API endpoint on:"

    return gr.Textbox.update(label=msg)


def custom_css():
    path_to_css = Path(__file__).parent.resolve() / 'style.css'
    return open(path_to_css, 'r').read()


def get_checkpoints():
    global params

    try:
        models = requests.get(url=f'{params["address"]}/sdapi/v1/sd-models')
        options = requests.get(url=f'{params["address"]}/sdapi/v1/options')
        options_json = options.json()
        params['sd_checkpoint'] = options_json['sd_model_checkpoint']
        params['checkpoint_list'] = [result["title"] for result in models.json()]
    except:
        params['sd_checkpoint'] = ""
        params['checkpoint_list'] = []

    return gr.update(choices=params['checkpoint_list'], value=params['sd_checkpoint'])


def load_checkpoint(checkpoint):
    payload = {
        "sd_model_checkpoint": checkpoint
    }

    try:
        requests.post(url=f'{params["address"]}/sdapi/v1/options', json=payload)
    except:
        pass


def get_samplers():
    try:
        response = requests.get(url=f'{params["address"]}/sdapi/v1/samplers')
        response.raise_for_status()
        samplers = [x["name"] for x in response.json()]
    except:
        samplers = []

    return samplers


def ui():

    # Gradio elements
    # gr.Markdown('### Stable Diffusion API Pictures') # Currently the name of extension is shown as the title
    with gr.Accordion("Parameters", open=True, elem_classes="SDAP"):
        with gr.Row():
            address = gr.Textbox(placeholder=params['address'], value=params['address'], label='Auto1111\'s WebUI address')
            modes_list = ["Manual", "Immersive/Interactive", "Picturebook/Adventure"]
            mode = gr.Dropdown(modes_list, value=modes_list[params['mode']], label="Mode of operation", type="index")
            with gr.Column(scale=1, min_width=300):
                manage_VRAM = gr.Checkbox(value=params['manage_VRAM'], label='Manage VRAM')
                save_img = gr.Checkbox(value=params['save_img'], label='Keep original images and use them in chat')

            force_pic = gr.Button("Force the picture response")
            suppr_pic = gr.Button("Suppress the picture response")
        with gr.Row():
            checkpoint = gr.Dropdown(params['checkpoint_list'], value=params['sd_checkpoint'], label="Checkpoint", type="value")
            update_checkpoints = gr.Button("Get list of checkpoints")

        with gr.Accordion("Generation parameters", open=False):
            prompt_prefix = gr.Textbox(placeholder=params['prompt_prefix'], value=params['prompt_prefix'], label='Prompt Prefix (best used to describe the look of the character)')
            textgen_prefix = gr.Textbox(placeholder=params['textgen_prefix'], value=params['textgen_prefix'], label='textgen prefix (type [subject] where the subject should be placed)')
            negative_prompt = gr.Textbox(placeholder=params['negative_prompt'], value=params['negative_prompt'], label='Negative Prompt')
            with gr.Row():
                with gr.Column():
                    width = gr.Slider(256, 768, value=params['width'], step=64, label='Width')
                    height = gr.Slider(256, 768, value=params['height'], step=64, label='Height')
                with gr.Column(variant="compact", elem_id="sampler_col"):
                    with gr.Row(elem_id="sampler_row"):
                        sampler_name = gr.Dropdown(value=params['sampler_name'], label='Sampling method', elem_id="sampler_box")
                        create_refresh_button(sampler_name, lambda: None, lambda: {'choices': get_samplers()}, 'refresh-button')
                    steps = gr.Slider(1, 150, value=params['steps'], step=1, label="Sampling steps", elem_id="steps_box")
            with gr.Row():
                seed = gr.Number(label="Seed", value=params['seed'], elem_id="seed_box")
                cfg_scale = gr.Number(label="CFG Scale", value=params['cfg_scale'], elem_id="cfg_box")
                with gr.Column() as hr_options:
                    restore_faces = gr.Checkbox(value=params['restore_faces'], label='Restore faces')
                    enable_hr = gr.Checkbox(value=params['enable_hr'], label='Hires. fix')
            with gr.Row(visible=params['enable_hr'], elem_classes="hires_opts") as hr_options:
                hr_scale = gr.Slider(1, 4, value=params['hr_scale'], step=0.1, label='Upscale by')
                denoising_strength = gr.Slider(0, 1, value=params['denoising_strength'], step=0.01, label='Denoising strength')
                hr_upscaler = gr.Textbox(placeholder=params['hr_upscaler'], value=params['hr_upscaler'], label='Upscaler')

    # Event functions to update the parameters in the backend
    address.change(lambda x: params.update({"address": filter_address(x)}), address, None)
    mode.select(lambda x: params.update({"mode": x}), mode, None)
    mode.select(lambda x: toggle_generation(x > 1), inputs=mode, outputs=None)
    manage_VRAM.change(lambda x: params.update({"manage_VRAM": x}), manage_VRAM, None)
    manage_VRAM.change(lambda x: give_VRAM_priority('set' if x else 'reset'), inputs=manage_VRAM, outputs=None)
    save_img.change(lambda x: params.update({"save_img": x}), save_img, None)

    address.submit(fn=SD_api_address_update, inputs=address, outputs=address)
    prompt_prefix.change(lambda x: params.update({"prompt_prefix": x}), prompt_prefix, None)
    textgen_prefix.change(lambda x: params.update({"textgen_prefix": x}), textgen_prefix, None)
    negative_prompt.change(lambda x: params.update({"negative_prompt": x}), negative_prompt, None)
    width.change(lambda x: params.update({"width": x}), width, None)
    height.change(lambda x: params.update({"height": x}), height, None)
    hr_scale.change(lambda x: params.update({"hr_scale": x}), hr_scale, None)
    denoising_strength.change(lambda x: params.update({"denoising_strength": x}), denoising_strength, None)
    restore_faces.change(lambda x: params.update({"restore_faces": x}), restore_faces, None)
    hr_upscaler.change(lambda x: params.update({"hr_upscaler": x}), hr_upscaler, None)
    enable_hr.change(lambda x: params.update({"enable_hr": x}), enable_hr, None)
    enable_hr.change(lambda x: hr_options.update(visible=params["enable_hr"]), enable_hr, hr_options)
    update_checkpoints.click(get_checkpoints, None, checkpoint)
    checkpoint.change(lambda x: params.update({"sd_checkpoint": x}), checkpoint, None)
    checkpoint.change(load_checkpoint, checkpoint, None)

    sampler_name.change(lambda x: params.update({"sampler_name": x}), sampler_name, None)
    steps.change(lambda x: params.update({"steps": x}), steps, None)
    seed.change(lambda x: params.update({"seed": x}), seed, None)
    cfg_scale.change(lambda x: params.update({"cfg_scale": x}), cfg_scale, None)

    force_pic.click(lambda x: toggle_generation(True), inputs=force_pic, outputs=None)
    suppr_pic.click(lambda x: toggle_generation(False), inputs=suppr_pic, outputs=None)