Spaces:
Running
on
Zero
Running
on
Zero
File size: 95,932 Bytes
a93901d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 |
![Alt](./doc/manual/logo-mini.png "GLM Logo")
# GLM 0.9.9 Manual
![Alt](./doc/manual/g-truc.png "G-Truc Logo")
---
<div style="page-break-after: always;"> </div>
## Table of Contents
+ [0. Licenses](#section0)
+ [1. Getting started](#section1)
+ [1.1. Using global headers](#section1_1)
+ [1.2. Using separated headers](#section1_2)
+ [1.3. Using extension headers](#section1_3)
+ [1.4. Dependencies](#section1_4)
+ [1.5. Finding GLM with CMake](#section1_5)
+ [2. Preprocessor configurations](#section2)
+ [2.1. GLM\_FORCE\_MESSAGES: Platform auto detection and default configuration](#section2_1)
+ [2.2. GLM\_FORCE\_PLATFORM\_UNKNOWN: Force GLM to no detect the build platform](#section2_2)
+ [2.3. GLM\_FORCE\_COMPILER\_UNKNOWN: Force GLM to no detect the C++ compiler](#section2_3)
+ [2.4. GLM\_FORCE\_ARCH\_UNKNOWN: Force GLM to no detect the build architecture](#section2_4)
+ [2.5. GLM\_FORCE\_CXX\_UNKNOWN: Force GLM to no detect the C++ standard](#section2_5)
+ [2.6. GLM\_FORCE\_CXX**: C++ language detection](#section2_6)
+ [2.7. GLM\_FORCE\_EXPLICIT\_CTOR: Requiring explicit conversions](#section2_7)
+ [2.8. GLM\_FORCE\_INLINE: Force inline](#section2_8)
+ [2.9. GLM\_FORCE\_ALIGNED\_GENTYPES: Force GLM to enable aligned types](#section2_9)
+ [2.10. GLM\_FORCE\_DEFAULT\_ALIGNED\_GENTYPES: Force GLM to use aligned types by default](#section2_10)
+ [2.11. GLM\_FORCE\_INTRINSICS: Using SIMD optimizations](#section2_11)
+ [2.12. GLM\_FORCE\_PRECISION\_**: Default precision](#section2_12)
+ [2.13. GLM\_FORCE\_SINGLE\_ONLY: Removed explicit 64-bits floating point types](#section2_13)
+ [2.14. GLM\_FORCE\_SWIZZLE: Enable swizzle operators](#section2_14)
+ [2.15. GLM\_FORCE\_XYZW\_ONLY: Only exposes x, y, z and w components](#section2_15)
+ [2.16. GLM\_FORCE\_LEFT\_HANDED: Force left handed coordinate system](#section2_16)
+ [2.17. GLM\_FORCE\_DEPTH\_ZERO\_TO\_ONE: Force the use of a clip space between 0 to 1](#section2_17)
+ [2.18. GLM\_FORCE\_SIZE\_T\_LENGTH: Vector and matrix static size type](#section2_18)
+ [2.19. GLM\_FORCE\_UNRESTRICTED\_GENTYPE: Removing genType restriction](#section2_19)
+ [2.20. GLM\_FORCE\_SILENT\_WARNINGS: Silent C++ warnings from language extensions](#section2_20)
+ [2.21. GLM\_FORCE\_QUAT\_DATA\_WXYZ: Force GLM to store quat data as w,x,y,z instead of x,y,z,w](#section2_21)
+ [3. Stable extensions](#section3)
+ [3.1. Scalar types](#section3_1)
+ [3.2. Scalar functions](#section3_2)
+ [3.3. Vector types](#section3_3)
+ [3.4. Vector types with precision qualifiers](#section3_4)
+ [3.5. Vector functions](#section3_5)
+ [3.6. Matrix types](#section3_6)
+ [3.7. Matrix types with precision qualifiers](#section3_7)
+ [3.8. Matrix functions](#section3_8)
+ [3.9. Quaternion types](#section3_9)
+ [3.10. Quaternion types with precision qualifiers](#section3_10)
+ [3.11. Quaternion functions](#section3_11)
+ [4. Recommended extensions](#section4)
+ [4.1. GLM_GTC_bitfield](#section4_1)
+ [4.2. GLM_GTC_color_space](#section4_2)
+ [4.3. GLM_GTC_constants](#section4_3)
+ [4.4. GLM_GTC_epsilon](#section4_4)
+ [4.5. GLM_GTC_integer](#section4_5)
+ [4.6. GLM_GTC_matrix_access](#section4_6)
+ [4.7. GLM_GTC_matrix_integer](#section4_7)
+ [4.8. GLM_GTC_matrix_inverse](#section4_8)
+ [4.9. GLM_GTC_matrix_transform](#section4_9)
+ [4.10. GLM_GTC_noise](#section4_10)
+ [4.11. GLM_GTC_packing](#section4_11)
+ [4.12. GLM_GTC_quaternion](#section4_12)
+ [4.13. GLM_GTC_random](#section4_13)
+ [4.14. GLM_GTC_reciprocal](#section4_14)
+ [4.15. GLM_GTC_round](#section4_15)
+ [4.16. GLM_GTC_type_alignment](#section4_16)
+ [4.17. GLM_GTC_type_precision](#section4_17)
+ [4.18. GLM_GTC_type_ptr](#section4_18)
+ [4.19. GLM_GTC_ulp](#section4_19)
+ [4.20. GLM_GTC_vec1](#section4_20)
+ [5. OpenGL interoperability](#section5)
+ [5.1. GLM Replacements for deprecated OpenGL functions](#section5_1)
+ [5.2. GLM Replacements for GLU functions](#section5_2)
+ [6. Known issues](#section6)
+ [6.1. Not function](#section6_1)
+ [6.2. Precision qualifiers support](#section6_2)
+ [7. FAQ](#section7)
+ [7.1 Why GLM follows GLSL specification and conventions?](#section7_1)
+ [7.2. Does GLM run GLSL programs?](#section7_2)
+ [7.3. Does a GLSL compiler build GLM codes?](#section7_3)
+ [7.4. Should I use ‘GTX’ extensions?](#section7_4)
+ [7.5. Where can I ask my questions?](#section7_5)
+ [7.6. Where can I find the documentation of extensions?](#section7_6)
+ [7.7. Should I use 'using namespace glm;'?](#section7_7)
+ [7.8. Is GLM fast?](#section7_8)
+ [7.9. When I build with Visual C++ with /w4 warning level, I have warnings...](#section7_9)
+ [7.10. Why some GLM functions can crash because of division by zero?](#section7_10)
+ [7.11. What unit for angles us used in GLM?](#section7_11)
+ [7.12. Windows headers cause build errors...](#section7_12)
+ [7.13. Constant expressions support](#section7_13)
+ [8. Code samples](#section8)
+ [8.1. Compute a triangle normal](#section8_1)
+ [8.2. Matrix transform](#section8_2)
+ [8.3. Vector types](#section8_3)
+ [8.4. Lighting](#section8_4)
+ [9. Contributing to GLM](#section9)
+ [9.1. Submitting bug reports](#section9_1)
+ [9.2. Contributing to GLM with pull request](#section9_2)
+ [9.3. Coding style](#section9_3)
+ [10. References](#section10)
+ [10.1. OpenGL specifications](#section10_1)
+ [10.2. External links](#section10_2)
+ [10.3. Projects using GLM](#section10_3)
+ [10.4. Tutorials using GLM](#section10_4)
+ [10.5. Equivalent for other languages](#section10_5)
+ [10.6. Alternatives to GLM](#section10_6)
+ [10.7. Acknowledgements](#section10_7)
---
<div style="page-break-after: always;"> </div>
## <a name="section0"></a> Licenses
### The Happy Bunny License (Modified MIT License)
Copyright (c) 2005 - G-Truc Creation
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
Restrictions: By making use of the Software for military purposes, you
choose to make a Bunny unhappy.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
![](./doc/manual/frontpage1.png)
### The MIT License
Copyright (c) 2005 - G-Truc Creation
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
![](./doc/manual/frontpage2.png)
---
<div style="page-break-after: always;"> </div>
## <a name="section1"></a> 1. Getting started
### <a name="section1_1"></a> 1.1. Using global headers
GLM is a header-only library, and thus does not need to be compiled. We can use GLM's implementation of GLSL's mathematics functionality by including the `<glm/glm.hpp>` header:
```cpp
#include <glm/glm.hpp>
```
To extend the feature set supported by GLM and keeping the library as close to GLSL as possible, new features are implemented as extensions that can be included thought a separated header:
```cpp
// Include all GLM core / GLSL features
#include <glm/glm.hpp> // vec2, vec3, mat4, radians
// Include all GLM extensions
#include <glm/ext.hpp> // perspective, translate, rotate
glm::mat4 transform(glm::vec2 const& Orientation, glm::vec3 const& Translate, glm::vec3 const& Up)
{
glm::mat4 Proj = glm::perspective(glm::radians(45.f), 1.33f, 0.1f, 10.f);
glm::mat4 ViewTranslate = glm::translate(glm::mat4(1.f), Translate);
glm::mat4 ViewRotateX = glm::rotate(ViewTranslate, Orientation.y, Up);
glm::mat4 View = glm::rotate(ViewRotateX, Orientation.x, Up);
glm::mat4 Model = glm::mat4(1.0f);
return Proj * View * Model;
}
```
*Note: Including `<glm/glm.hpp>` and `<glm/ext.hpp>` is convenient but pull a lot of code which will significantly increase build time, particularly if these files are included in all source files. We may prefer to use the approaches describe in the two following sections to keep the project build fast.*
### <a name="section1_2"></a> 1.2. Using separated headers
GLM relies on C++ templates heavily, and may significantly increase compilation times for projects that use it. Hence, user projects could only include the features they actually use. Following is the list of all the core features, based on GLSL specification, headers:
```cpp
#include <glm/vec2.hpp> // vec2, bvec2, dvec2, ivec2 and uvec2
#include <glm/vec3.hpp> // vec3, bvec3, dvec3, ivec3 and uvec3
#include <glm/vec4.hpp> // vec4, bvec4, dvec4, ivec4 and uvec4
#include <glm/mat2x2.hpp> // mat2, dmat2
#include <glm/mat2x3.hpp> // mat2x3, dmat2x3
#include <glm/mat2x4.hpp> // mat2x4, dmat2x4
#include <glm/mat3x2.hpp> // mat3x2, dmat3x2
#include <glm/mat3x3.hpp> // mat3, dmat3
#include <glm/mat3x4.hpp> // mat3x4, dmat2
#include <glm/mat4x2.hpp> // mat4x2, dmat4x2
#include <glm/mat4x3.hpp> // mat4x3, dmat4x3
#include <glm/mat4x4.hpp> // mat4, dmat4
#include <glm/common.hpp> // all the GLSL common functions: abs, min, mix, isnan, fma, etc.
#include <glm/exponential.hpp> // all the GLSL exponential functions: pow, log, exp2, sqrt, etc.
#include <glm/geometric.hpp> // all the GLSL geometry functions: dot, cross, reflect, etc.
#include <glm/integer.hpp> // all the GLSL integer functions: findMSB, bitfieldExtract, etc.
#include <glm/matrix.hpp> // all the GLSL matrix functions: transpose, inverse, etc.
#include <glm/packing.hpp> // all the GLSL packing functions: packUnorm4x8, unpackHalf2x16, etc.
#include <glm/trigonometric.hpp> // all the GLSL trigonometric functions: radians, cos, asin, etc.
#include <glm/vector_relational.hpp> // all the GLSL vector relational functions: equal, less, etc.
```
The following is a code sample using separated core headers and an extension:
```cpp
// Include GLM core features
#include <glm/vec2.hpp> // vec2
#include <glm/vec3.hpp> // vec3
#include <glm/mat4x4.hpp> // mat4
#include <glm/trigonometric.hpp> //radians
// Include GLM extension
#include <glm/ext/matrix_transform.hpp> // perspective, translate, rotate
glm::mat4 transform(glm::vec2 const& Orientation, glm::vec3 const& Translate, glm::vec3 const& Up)
{
glm::mat4 Proj = glm::perspective(glm::radians(45.f), 1.33f, 0.1f, 10.f);
glm::mat4 ViewTranslate = glm::translate(glm::mat4(1.f), Translate);
glm::mat4 ViewRotateX = glm::rotate(ViewTranslate, Orientation.y, Up);
glm::mat4 View = glm::rotate(ViewRotateX, Orientation.x, Up);
glm::mat4 Model = glm::mat4(1.0f);
return Proj * View * Model;
}
```
### <a name="section1_3"></a> 1.3. Using extension headers
Using GLM through split headers to minimize the project build time:
```cpp
// Include GLM vector extensions:
#include <glm/ext/vector_float2.hpp> // vec2
#include <glm/ext/vector_float3.hpp> // vec3
#include <glm/ext/vector_trigonometric.hpp> // radians
// Include GLM matrix extensions:
#include <glm/ext/matrix_float4x4.hpp> // mat4
#include <glm/ext/matrix_transform.hpp> // perspective, translate, rotate
glm::mat4 transform(glm::vec2 const& Orientation, glm::vec3 const& Translate, glm::vec3 const& Up)
{
glm::mat4 Proj = glm::perspective(glm::radians(45.f), 1.33f, 0.1f, 10.f);
glm::mat4 ViewTranslate = glm::translate(glm::mat4(1.f), Translate);
glm::mat4 ViewRotateX = glm::rotate(ViewTranslate, Orientation.y, Up);
glm::mat4 View = glm::rotate(ViewRotateX, Orientation.x, Up);
glm::mat4 Model = glm::mat4(1.0f);
return Proj * View * Model;
}
```
### <a name="section1_4"></a> 1.4. Dependencies
GLM does not depend on external libraries or headers such as `<GL/gl.h>`, [`<GL/glcorearb.h>`](http://www.opengl.org/registry/api/GL/glcorearb.h), `<GLES3/gl3.h>`, `<GL/glu.h>`, or `<windows.h>`.
### <a name="section1_5"></a> 1.5. Finding GLM with CMake
When installed, GLM provides the CMake package configuration files `glmConfig.cmake` and `glmConfigVersion.cmake`.
To use these configurations files, you may need to set the `glm_DIR` variable to the directory containing the configuration files `<installation prefix>/lib/cmake/glm/`.
Use the `find_package` CMake command to load the configurations into your project. Lastly, either link your executable against the `glm::glm` target or add `${GLM_INCLUDE_DIRS}` to your target's include directories:
```cmake
set(glm_DIR <installation prefix>/lib/cmake/glm) # if necessary
find_package(glm REQUIRED)
target_link_libraries(<your executable> glm::glm)
```
To use GLM as a submodule in a project instead, use `add_subdirectory` to expose the same target, or add the directory to your target's
```cmake
add_subdirectory(glm)
target_link_libraries(<your executable> glm::glm)
# or
target_include_directories(<your executable> glm)
```
---
<div style="page-break-after: always;"> </div>
## <a name="section2"></a> 2. Preprocessor configurations
### <a name="section2_1"></a> 2.1. GLM\_FORCE\_MESSAGES: Platform auto detection and default configuration
When included, GLM will first automatically detect the compiler used, the C++ standard supported, the compiler arguments used to configure itself matching the build environment.
For example, if the compiler arguments request AVX code generation, GLM will rely on its code path providing AVX optimizations when available.
We can change GLM configuration using specific C++ preprocessor defines that must be declared before including any GLM headers.
Using `GLM_FORCE_MESSAGES`, GLM will report the configuration as part of the build log.
```cpp
#define GLM_FORCE_MESSAGES // Or defined when building (e.g. -DGLM_FORCE_SWIZZLE)
#include <glm/glm.hpp>
```
Example of configuration log generated by `GLM_FORCE_MESSAGES`:
```plaintext
GLM: version 0.9.9.1
GLM: C++ 17 with extensions
GLM: Clang compiler detected
GLM: x86 64 bits with AVX instruction set build target
GLM: Linux platform detected
GLM: GLM_FORCE_SWIZZLE is undefined. swizzling functions or operators are disabled.
GLM: GLM_FORCE_SIZE_T_LENGTH is undefined. .length() returns a glm::length_t, a typedef of int following GLSL.
GLM: GLM_FORCE_UNRESTRICTED_GENTYPE is undefined. Follows strictly GLSL on valid function genTypes.
GLM: GLM_FORCE_DEPTH_ZERO_TO_ONE is undefined. Using negative one to one depth clip space.
GLM: GLM_FORCE_LEFT_HANDED is undefined. Using right handed coordinate system.
```
The following subsections describe each configurations and defines.
### <a name="section2_2"></a> 2.2. GLM\_FORCE\_PLATFORM\_UNKNOWN: Force GLM to no detect the build platform
`GLM_FORCE_PLATFORM_UNKNOWN` prevents GLM from detecting the build platform.
### <a name="section2_3"></a> 2.3. GLM\_FORCE\_COMPILER\_UNKNOWN: Force GLM to no detect the C++ compiler
`GLM_FORCE_COMPILER_UNKNOWN` prevents GLM from detecting the C++ compiler.
### <a name="section2_4"></a> 2.4. GLM\_FORCE\_ARCH\_UNKNOWN: Force GLM to no detect the build architecture
`GLM_FORCE_ARCH_UNKNOWN` prevents GLM from detecting the build target architecture.
### <a name="section2_5"></a> 2.5. GLM\_FORCE\_CXX\_UNKNOWN: Force GLM to no detect the C++ standard
`GLM_FORCE_CSS_UNKNOWN` prevents GLM from detecting the C++ compiler standard support.
### <a name="section2_6"></a> 2.6. GLM\_FORCE\_CXX**: C++ language detection
GLM will automatically take advantage of compilers’ language extensions when enabled. To increase cross platform compatibility and to avoid compiler extensions, a programmer can define `GLM_FORCE_CXX98` before
any inclusion of `<glm/glm.hpp>` to restrict the language feature set C++98:
```cpp
#define GLM_FORCE_CXX98
#include <glm/glm.hpp>
```
For C++11, C++14, and C++17 equivalent defines are available:
* `GLM_FORCE_CXX11`
* `GLM_FORCE_CXX14`
* `GLM_FORCE_CXX17`
```cpp
#define GLM_FORCE_CXX11
#include <glm/glm.hpp>
// If the compiler doesn’t support C++11, compiler errors will happen.
```
`GLM_FORCE_CXX17` overrides `GLM_FORCE_CXX14`; `GLM_FORCE_CXX14` overrides `GLM_FORCE_CXX11`; and `GLM_FORCE_CXX11` overrides `GLM_FORCE_CXX98` defines.
### <a name="section2_7"></a> 2.7. GLM\_FORCE\_EXPLICIT\_CTOR: Requiring explicit conversions
GLSL supports implicit conversions of vector and matrix types. For example, an ivec4 can be implicitly converted into `vec4`.
Often, this behaviour is not desirable but following the spirit of the library, this is the default behavior in GLM. However, GLM 0.9.6 introduced the define `GLM_FORCE_EXPLICIT_CTOR` to require explicit conversion for GLM types.
```cpp
#include <glm/glm.hpp>
void foo()
{
glm::ivec4 a;
...
glm::vec4 b(a); // Explicit conversion, OK
glm::vec4 c = a; // Implicit conversion, OK
...
}
```
With `GLM_FORCE_EXPLICIT_CTOR` define, implicit conversions are not allowed:
```cpp
#define GLM_FORCE_EXPLICIT_CTOR
#include <glm/glm.hpp>
void foo()
{
glm::ivec4 a;
{
glm::vec4 b(a); // Explicit conversion, OK
glm::vec4 c = a; // Implicit conversion, ERROR
...
}
```
### <a name="section2_8"></a> 2.8. GLM\_FORCE\_INLINE: Force inline
To push further the software performance, a programmer can define `GLM_FORCE_INLINE` before any inclusion of `<glm/glm.hpp>` to force the compiler to inline GLM code.
```cpp
#define GLM_FORCE_INLINE
#include <glm/glm.hpp>
```
### <a name="section2_9"></a> 2.9. GLM\_FORCE\_ALIGNED\_GENTYPES: Force GLM to enable aligned types
Every object type has the property called alignment requirement, which is an integer value (of type `std::size_t`, always a power of 2) representing the number of bytes between successive addresses at which objects of this type can be allocated. The alignment requirement of a type can be queried with alignof or `std::alignment_of`. The pointer alignment function `std::align` can be used to obtain a suitably-aligned pointer within some buffer, and `std::aligned_storage` can be used to obtain suitably-aligned storage.
Each object type imposes its alignment requirement on every object of that type; stricter alignment (with larger alignment requirement) can be requested using C++11 `alignas`.
In order to satisfy alignment requirements of all non-static members of a class, padding may be inserted after some of its members.
GLM supports both packed and aligned types. Packed types allow filling data structure without inserting extra padding. Aligned GLM types align addresses based on the size of the value type of a GLM type.
```cpp
#define GLM_FORCE_ALIGNED_GENTYPES
#include <glm/glm.hpp>
#include <glm/gtc/type_aligned.hpp>
typedef glm::aligned_vec4 vec4a;
typedef glm::packed_vec4 vec4p;
```
### <a name="section2_10"></a> 2.10. GLM\_FORCE\_DEFAULT\_ALIGNED\_GENTYPES: Force GLM to use aligned types by default
GLM allows using aligned types by default for vector types using `GLM_FORCE_DEFAULT_ALIGNED_GENTYPES`:
```cpp
#define GLM_FORCE_DEFAULT_ALIGNED_GENTYPES
#include <glm/glm.hpp>
struct MyStruct
{
glm::vec4 a;
float b;
glm::vec3 c;
};
void foo()
{
printf("MyStruct requires memory padding: %d bytes\n", sizeof(MyStruct));
}
>>> MyStruct requires memory padding: 48 bytes
```
```cpp
#include <glm/glm.hpp>
struct MyStruct
{
glm::vec4 a;
float b;
glm::vec3 c;
};
void foo()
{
printf("MyStruct is tightly packed: %d bytes\n", sizeof(MyStruct));
}
>>> MyStruct is tightly packed: 32 bytes
```
*Note: GLM SIMD optimizations require the use of aligned types*
### <a name="section2_11"></a> 2.11. GLM\_FORCE\_INTRINSICS: Using SIMD optimizations
GLM provides some SIMD optimizations based on [compiler intrinsics](https://msdn.microsoft.com/en-us/library/26td21ds.aspx).
These optimizations will be automatically thanks to compiler arguments when `GLM_FORCE_INTRINSICS` is defined before including GLM files.
For example, if a program is compiled with Visual Studio using `/arch:AVX`, GLM will detect this argument and generate code using AVX instructions automatically when available.
It’s possible to avoid the instruction set detection by forcing the use of a specific instruction set with one of the fallowing define:
`GLM_FORCE_SSE2`, `GLM_FORCE_SSE3`, `GLM_FORCE_SSSE3`, `GLM_FORCE_SSE41`, `GLM_FORCE_SSE42`, `GLM_FORCE_AVX`, `GLM_FORCE_AVX2` or `GLM_FORCE_AVX512`.
The use of intrinsic functions by GLM implementation can be avoided using the define `GLM_FORCE_PURE` before any inclusion of GLM headers. This can be particularly useful if we want to rely on C++14 `constexpr`.
```cpp
#define GLM_FORCE_PURE
#include <glm/glm.hpp>
static_assert(glm::vec4::length() == 4, "Using GLM C++ 14 constexpr support for compile time tests");
// GLM code will be compiled using pure C++ code without any intrinsics
```
```cpp
#define GLM_FORCE_SIMD_AVX2
#include <glm/glm.hpp>
// If the compiler doesn’t support AVX2 instrinsics, compiler errors will happen.
```
Additionally, GLM provides a low level SIMD API in glm/simd directory for users who are really interested in writing fast algorithms.
### <a name="section2_12"></a> 2.12. GLM\_FORCE\_PRECISION\_**: Default precision
C++ does not provide a way to implement GLSL default precision selection (as defined in GLSL 4.10 specification section 4.5.3) with GLSL-like syntax.
```glsl
precision mediump int;
precision highp float;
```
To use the default precision functionality, GLM provides some defines that need to added before any include of `glm.hpp`:
```cpp
#define GLM_FORCE_PRECISION_MEDIUMP_INT
#define GLM_FORCE_PRECISION_HIGHP_FLOAT
#include <glm/glm.hpp>
```
Available defines for floating point types (`glm::vec\*`, `glm::mat\*`):
* `GLM_FORCE_PRECISION_LOWP_FLOAT`: Low precision
* `GLM_FORCE_PRECISION_MEDIUMP_FLOAT`: Medium precision
* `GLM_FORCE_PRECISION_HIGHP_FLOAT`: High precision (default)
Available defines for floating point types (`glm::dvec\*`, `glm::dmat\*`):
* `GLM_FORCE_PRECISION_LOWP_DOUBLE`: Low precision
* `GLM_FORCE_PRECISION_MEDIUMP_DOUBLE`: Medium precision
* `GLM_FORCE_PRECISION_HIGHP_DOUBLE`: High precision (default)
Available defines for signed integer types (`glm::ivec\*`):
* `GLM_FORCE_PRECISION_LOWP_INT`: Low precision
* `GLM_FORCE_PRECISION_MEDIUMP_INT`: Medium precision
* `GLM_FORCE_PRECISION_HIGHP_INT`: High precision (default)
Available defines for unsigned integer types (`glm::uvec\*`):
* `GLM_FORCE_PRECISION_LOWP_UINT`: Low precision
* `GLM_FORCE_PRECISION_MEDIUMP_UINT`: Medium precision
* `GLM_FORCE_PRECISION_HIGHP_UINT`: High precision (default)
### <a name="section2_13"></a> 2.13. GLM\_FORCE\_SINGLE\_ONLY: Removed explicit 64-bits floating point types
Some platforms (Dreamcast) doesn't support double precision floating point values. To compile on such platforms, GCC has the `--m4-single-only` build argument. When defining `GLM_FORCE_SINGLE_ONLY` before including GLM headers, GLM releases the requirement of double precision floating point values support. Effectivement, all the float64 types are no longer defined and double behaves like float.
### <a name="section2_14"></a> 2.14. GLM\_FORCE\_SWIZZLE: Enable swizzle operators
Shader languages like GLSL often feature so-called swizzle expressions, which may be used to freely select and arrange a vector's components. For example, `variable.x`, `variable.xzy` and `variable.zxyy` respectively form a scalar, a 3D vector and a 4D vector. The result of a swizzle expression in GLSL can be either an R-value or an L-value. Swizzle expressions can be written with characters from exactly one of `xyzw` (usually for positions), `rgba` (usually for colors), and `stpq` (usually for texture coordinates).
```glsl
vec4 A;
vec2 B;
B.yx = A.wy;
B = A.xx;
vec3 C = A.bgr;
vec3 D = B.rsz; // Invalid, won't compile
```
GLM supports some of this functionality. Swizzling can be enabled by defining `GLM_FORCE_SWIZZLE`.
*Note: Enabling swizzle expressions will massively increase the size of your binaries and the time it takes to compile them!*
GLM has two levels of swizzling support described in the following subsections.
#### 2.14.1. Swizzle functions for standard C++ 98
When compiling GLM as C++98, R-value swizzle expressions are simulated through member functions of each vector type.
```cpp
#define GLM_FORCE_SWIZZLE // Or defined when building (e.g. -DGLM_FORCE_SWIZZLE)
#include <glm/glm.hpp>
void foo()
{
glm::vec4 const ColorRGBA = glm::vec4(1.0f, 0.5f, 0.0f, 1.0f);
glm::vec3 const ColorBGR = ColorRGBA.bgr();
glm::vec3 const PositionA = glm::vec3(1.0f, 0.5f, 0.0f);
glm::vec3 const PositionB = PositionXYZ.xyz() * 2.0f;
glm::vec2 const TexcoordST = glm::vec2(1.0f, 0.5f);
glm::vec4 const TexcoordSTPQ = TexcoordST.stst();
}
```
Swizzle operators return a **copy** of the component values, and thus *can't* be used as L-values to change a vector's values.
```cpp
#define GLM_FORCE_SWIZZLE
#include <glm/glm.hpp>
void foo()
{
glm::vec3 const A = glm::vec3(1.0f, 0.5f, 0.0f);
// No compiler error, but A is not modified.
// An anonymous copy is being modified (and then discarded).
A.bgr() = glm::vec3(2.0f, 1.5f, 1.0f); // A is not modified!
}
```
#### 2.14.2. Swizzle operations for C++ 98 with language extensions
Visual C++, GCC and Clang support, as a _non-standard language extension_, anonymous `struct`s as `union` members. This permits a powerful swizzling implementation that both allows L-value swizzle expressions and GLSL-like syntax. To use this feature, the language extension must be enabled by a supporting compiler and `GLM_FORCE_SWIZZLE` must be `#define`d.
```cpp
#define GLM_FORCE_SWIZZLE
#include <glm/glm.hpp>
// Only guaranteed to work with Visual C++!
// Some compilers that support Microsoft extensions may compile this.
void foo()
{
glm::vec4 ColorRGBA = glm::vec4(1.0f, 0.5f, 0.0f, 1.0f);
// l-value:
glm::vec4 ColorBGRA = ColorRGBA.bgra;
// r-value:
ColorRGBA.bgra = ColorRGBA;
// Both l-value and r-value
ColorRGBA.bgra = ColorRGBA.rgba;
}
```
This version returns implementation-specific objects that _implicitly convert_ to their respective vector types. As a consequence of this design, these extra types **can't be directly used** as C++ function arguments; they must be converted through constructors or `operator()`.
```cpp
#define GLM_FORCE_SWIZZLE
#include <glm/glm.hpp>
using namespace glm;
void foo()
{
vec4 Color = vec4(1.0f, 0.5f, 0.0f, 1.0f);
// Generates compiler errors. Color.rgba is not a vector type.
vec4 ClampedA = clamp(Color.rgba, 0.f, 1.f); // ERROR
// Explicit conversion through a constructor
vec4 ClampedB = clamp(vec4(Color.rgba), 0.f, 1.f); // OK
// Explicit conversion through operator()
vec4 ClampedC = clamp(Color.rgba(), 0.f, 1.f); // OK
}
```
*Note: The implementation has a caveat: Swizzle operator types must be different on both size of the equal operator or the operation will fail. There is no known fix for this issue to date*
### <a name="section2_15"></a> 2.15. GLM\_FORCE\_XYZW\_ONLY: Only exposes x, y, z and w components
Following GLSL specifications, GLM supports three sets of components to access vector types member: x, y, z, w; r, g, b, a; and s, t, p, q.
Also, this is making vector component very expressive in the code, it may make debugging vector types a little cubersom as the debuggers will typically display three time the values for each compoenents due to the existence of the three sets.
To simplify vector types, GLM allows exposing only x, y, z and w components thanks to `GLM_FORCE_XYZW_ONLY` define.
### <a name="section2_16"></a> 2.16. GLM\_FORCE\_LEFT\_HANDED: Force left handed coordinate system
By default, OpenGL is using a right handed coordinate system. However, others APIs such as Direct3D have done different choice and relies on the left handed coordinate system.
GLM allows switching the coordinate system to left handed by defining `GLM_FORCE_LEFT_HANDED`.
### <a name="section2_17"></a> 2.17. GLM\_FORCE\_DEPTH\_ZERO\_TO\_ONE: Force the use of a clip space between 0 to 1
By default, OpenGL is using a -1 to 1 clip space in Z-axis. However, others APIs such as Direct3D relies on a clip space between 0 to 1 in Z-axis.
GLM allows switching the clip space in Z-axis to 0 to 1 by defining `GLM_FORCE_DEPTH_ZERO_TO_ONE`.
### <a name="section2_18"></a> 2.18. GLM\_FORCE\_SIZE\_T\_LENGTH: Vector and matrix static size
GLSL supports the member function .length() for all vector and matrix types.
```cpp
#include <glm/glm.hpp>
void foo(vec4 const& v)
{
int Length = v.length();
...
}
```
This function returns an `int` however this function typically interacts with STL `size_t` based code. GLM provides `GLM_FORCE_SIZE_T_LENGTH` pre-processor configuration so that member functions `length()` return a `size_t`.
Additionally, GLM defines the type `glm::length_t` to identify `length()` returned type, independently from `GLM_FORCE_SIZE_T_LENGTH`.
```cpp
#define GLM_FORCE_SIZE_T_LENGTH
#include <glm/glm.hpp>
void foo(vec4 const& v)
{
glm::length_t Length = v.length();
...
}
```
### <a name="section2_19"></a> 2.19. GLM\_FORCE\_UNRESTRICTED\_GENTYPE: Removing genType restriction
GLSL has restrictions on types supported by certain functions that may appear excessive.
By default, GLM follows the GLSL specification as accurately as possible however it's possible to relax these rules using `GLM_FORCE_UNRESTRICTED_GENTYPE` define.
```cpp
#include <glm/glm.hpp>
float average(float const A, float const B)
{
return glm::mix(A, B, 0.5f); // By default glm::mix only supports floating-point types
}
```
By defining GLM\_FORCE\_UNRESTRICTED\_GENTYPE, we allow using integer types:
```cpp
#define GLM_FORCE_UNRESTRICTED_GENTYPE
#include <glm/glm.hpp>
int average(int const A, int const B)
{
return glm::mix(A, B, 0.5f); // integers are ok thanks to GLM_FORCE_UNRESTRICTED_GENTYPE
}
```
### <a name="section2_20"></a> 2.20. GLM\_FORCE\_SILENT\_WARNINGS: Silent C++ warnings from language extensions
When using /W4 on Visual C++ or -Wpedantic on GCC, for example, the compilers will generate warnings for using C++ language extensions (/Za with Visual C++) such as anonymous struct.
GLM relies on anonymous structs for swizzle operators and aligned vector types. To silent those warnings define `GLM_FORCE_SILENT_WARNINGS` before including GLM headers.
### <a name="section2_21"></a> 2.21. GLM\_FORCE\_QUAT\_DATA\_WXYZ: Force GLM to store quat data as w,x,y,z instead of x,y,z,w
By default GLM store quaternion components with the x, y, z, w order. `GLM_FORCE_QUAT_DATA_WXYZ` allows switching the quaternion data storage to the w, x, y, z order.
---
<div style="page-break-after: always;"> </div>
## <a name="section3"></a> 3. Stable extensions
### <a name="section3_1"></a> 3.1. Scalar types
#### 3.1.1. GLM_EXT_scalar_int_sized
This extension exposes sized and signed integer types.
Include `<glm/ext/scalar_int_sized.hpp>` to use these features.
#### 3.1.2. GLM_EXT_scalar_uint_sized
This extension exposes sized and unsigned integer types.
```cpp
#include <glm/ext/scalar_common.hpp>
glm::uint64 pack(glm::uint32 A, glm::uint16 B, glm::uint8 C, glm::uint8 D)
{
glm::uint64 ShiftA = 0;
glm::uint64 ShiftB = sizeof(glm::uint32) * 8;
glm::uint64 ShiftC = (sizeof(glm::uint32) + sizeof(glm::uint16)) * 8;
glm::uint64 ShiftD = (sizeof(glm::uint32) + sizeof(glm::uint16) + sizeof(glm::uint8)) * 8;
return (glm::uint64(A) << ShiftA) | (glm::uint64(B) << ShiftB) | (glm::uint64(C) << ShiftC) | (glm::uint64(D) << ShiftD);
}
```
Include `<glm/ext/scalar_uint_sized.hpp>` to use these features.
### <a name="section3_2"></a> 3.2. Scalar functions
#### 3.2.1. GLM_EXT_scalar_common
This extension exposes support for `min` and `max` functions taking more than two scalar arguments. Also, it adds `fmin` and `fmax` variants which prevents `NaN` propagation.
```cpp
#include <glm/ext/scalar_common.hpp>
float positiveMax(float const a, float const b)
{
return glm::fmax(a, b, 0.0f);
}
```
Include `<glm/ext/scalar_common.hpp>` to use these features.
#### 3.2.2. GLM_EXT_scalar_relational
This extension exposes `equal` and `notEqual` scalar variants which takes an epsilon argument.
```cpp
#include <glm/ext/scalar_relational.hpp>
bool epsilonEqual(float const a, float const b)
{
float const CustomEpsilon = 0.0001f;
return glm::equal(a, b, CustomEpsilon);
}
```
Include `<glm/ext/scalar_relational.hpp>` to use these features.
#### 3.2.3. GLM_EXT_scalar_constants
This extension exposes useful constants such as `epsilon` and `pi`.
```cpp
#include <glm/ext/scalar_constants.hpp>
float circumference(float const Diameter)
{
return glm::pi<float>() * Diameter;
}
```
```cpp
#include <glm/common.hpp> // abs
#include <glm/ext/scalar_constants.hpp> // epsilon
bool equalULP1(float const a, float const b)
{
return glm::abs(a - b) <= glm::epsilon<float>();
}
```
Include `<glm/ext/scalar_constants.hpp>` to use these features.
#### 3.2.4. GLM_EXT_scalar_ulp
This extension exposes function that measure of accuracy in numeric calculations.
```cpp
#include <glm/ext/scalar_ulp.hpp>
bool test_ulp(float x)
{
float const a = glm::next_float(x); // return a float a ULP away from the float argument.
return float_distance(a, x) == 1; // check both float are a single ULP away.
}
```
Include `<glm/ext/scalar_ulp.hpp>` to use these features.
### <a name="section3_3"></a> 3.3. Vector types
#### 3.3.1. GLM_EXT_vector_float1
This extension exposes single-precision floating point vector with 1 component: `vec1`.
Include `<glm/ext/vector_float1.hpp>` to use these features.
#### 3.3.2. GLM_EXT_vector_float2
This extension exposes single-precision floating point vector with 2 components: `vec2`.
Include `<glm/ext/vector_float2.hpp>` to use these features.
#### 3.3.3. GLM_EXT_vector_float3
This extension exposes single-precision floating point vector with 3 components: `vec3`.
Include `<glm/ext/vector_float3.hpp>` to use these features.
#### 3.3.4. GLM_EXT_vector_float4
This extension exposes single-precision floating point vector with 4 components: `vec4`.
Include `<glm/ext/vector_float4.hpp>` to use these features.
#### 3.3.5. GLM_EXT_vector_double1
This extension exposes double-precision floating point vector with 1 component: `dvec1`.
Include `<glm/ext/vector_double1.hpp>` to use these features.
#### 3.3.6. GLM_EXT_vector_double2
This extension exposes double-precision floating point vector with 2 components: `dvec2`.
Include `<glm/ext/vector_double2.hpp>` to use these features.
#### 3.3.7. GLM_EXT_vector_double3
This extension exposes double-precision floating point vector with 3 components: `dvec3`.
Include `<glm/ext/vector_double3.hpp>` to use these features.
#### 3.3.8. GLM_EXT_vector_double4
This extension exposes double-precision floating point vector with 4 components: `dvec4`.
Include `<glm/ext/vector_double4.hpp>` to use these features.
#### 3.3.9. GLM_EXT_vector_int1
This extension exposes signed integer vector with 1 component: `ivec1`.
Include `<glm/ext/vector_int1.hpp>` to use these features.
#### 3.3.10. GLM_EXT_vector_int2
This extension exposes signed integer vector with 2 components: `ivec2`.
Include `<glm/ext/vector_int2.hpp>` to use these features.
#### 3.3.11. GLM_EXT_vector_int3
This extension exposes signed integer vector with 3 components: `ivec3`.
Include `<glm/ext/vector_int3.hpp>` to use these features.
#### 3.3.12. GLM_EXT_vector_int4
This extension exposes signed integer vector with 4 components: `ivec4`.
Include `<glm/ext/vector_int4.hpp>` to use these features.
#### 3.3.13. GLM_EXT_vector_int1
This extension exposes unsigned integer vector with 1 component: `uvec1`.
Include `<glm/ext/vector_uint1.hpp>` to use these features.
#### 3.3.14. GLM_EXT_vector_uint2
This extension exposes unsigned integer vector with 2 components: `uvec2`.
Include `<glm/ext/vector_uint2.hpp>` to use these features.
#### 3.3.15. GLM_EXT_vector_uint3
This extension exposes unsigned integer vector with 3 components: `uvec3`.
Include `<glm/ext/vector_uint3.hpp>` to use these features.
#### 3.3.16. GLM_EXT_vector_uint4
This extension exposes unsigned integer vector with 4 components: `uvec4`.
Include `<glm/ext/vector_uint4.hpp>` to use these features.
#### 3.3.17. GLM_EXT_vector_bool1
This extension exposes boolean vector with 1 component: `bvec1`.
Include `<glm/ext/vector_bool1.hpp>` to use these features.
#### 3.3.18. GLM_EXT_vector_bool2
This extension exposes boolean vector with 2 components: `bvec2`.
Include `<glm/ext/vector_bool2.hpp>` to use these features.
#### 3.3.19. GLM_EXT_vector_bool3
This extension exposes boolean vector with 3 components: `bvec3`.
Include `<glm/ext/vector_bool3.hpp>` to use these features.
#### 3.3.20. GLM_EXT_vector_bool4
This extension exposes boolean vector with 4 components: `bvec4`.
Include `<glm/ext/vector_bool4.hpp>` to use these features.
### <a name="section3_4"></a> 3.4. Vector types with precision qualifiers
#### 3.4.1. GLM_EXT_vector_float1_precision
This extension exposes single-precision floating point vector with 1 component using various precision in term of ULPs: `lowp_vec1`, `mediump_vec1` and `highp_vec1`.
Include `<glm/ext/vector_float1_precision.hpp>` to use these features.
#### 3.4.2. GLM_EXT_vector_float2_precision
This extension exposes single-precision floating point vector with 2 components using various precision in term of ULPs: `lowp_vec2`, `mediump_vec2` and `highp_vec2`.
Include `<glm/ext/vector_float2_precision.hpp>` to use these features.
#### 3.4.3. GLM_EXT_vector_float3_precision
This extension exposes single-precision floating point vector with 3 components using various precision in term of ULPs: `lowp_vec3`, `mediump_vec3` and `highp_vec3`.
Include `<glm/ext/vector_float3_precision.hpp>` to use these features.
#### 3.4.4. GLM_EXT_vector_float4_precision
This extension exposes single-precision floating point vector with 4 components using various precision in term of ULPs: `lowp_vec4`, `mediump_vec4` and `highp_vec4`.
Include `<glm/ext/vector_float4_precision.hpp>` to use these features.
#### 3.4.5. GLM_EXT_vector_double1_precision
This extension exposes double-precision floating point vector with 1 component using various precision in term of ULPs: `lowp_dvec1`, `mediump_dvec1` and `highp_dvec1`.
Include `<glm/ext/vector_double1_precision.hpp>` to use these features.
#### 3.4.6. GLM_EXT_vector_double2_precision
This extension exposes double-precision floating point vector with 2 components using various precision in term of ULPs: `lowp_dvec2`, `mediump_dvec2` and `highp_dvec2`.
Include `<glm/ext/vector_double2_precision.hpp>` to use these features.
#### 3.4.7. GLM_EXT_vector_double3_precision
This extension exposes double-precision floating point vector with 3 components using various precision in term of ULPs: `lowp_dvec3`, `mediump_dvec3` and `highp_dvec3`.
Include `<glm/ext/vector_double3_precision.hpp>` to use these features.
#### 3.4.8. GLM_EXT_vector_double4_precision
This extension exposes double-precision floating point vector with 4 components using various precision in term of ULPs: `lowp_dvec4`, `mediump_dvec4` and `highp_dvec4`.
Include `<glm/ext/vector_double4_precision.hpp>` to use these features.
### <a name="section3_5"></a> 3.5. Vector functions
#### 3.5.1. GLM_EXT_vector_common
This extension exposes support for `min` and `max` functions taking more than two vector arguments. Also, it adds `fmin` and `fmax` variants which prevents `NaN` propagation.
```cpp
#include <glm/ext/vector_float2.hpp> // vec2
#include <glm/ext/vector_common.hpp> // fmax
float positiveMax(float const a, float const b)
{
return glm::fmax(a, b, 0.0f);
}
```
Include `<glm/ext/vector_common.hpp>` to use these features.
#### 3.5.2. GLM_EXT_vector_relational
This extension exposes `equal` and `notEqual` vector variants which takes an epsilon argument.
```cpp
#include <glm/ext/vector_float2.hpp> // vec2
#include <glm/ext/vector_relational.hpp> // equal, all
bool epsilonEqual(glm::vec2 const& A, glm::vec2 const& B)
{
float const CustomEpsilon = 0.0001f;
return glm::all(glm::equal(A, B, CustomEpsilon));
}
```
Include `<glm/ext/vector_relational.hpp>` to use these features.
#### 3.5.3. GLM_EXT_vector_ulp
This extension exposes function that measure of accuracy in numeric calculations.
```cpp
#include <glm/ext/vector_ulp.hpp>
#include <glm/ext/vector_float4.hpp>
#include <glm/ext/vector_int4.hpp>
bool test_ulp(glm::vec4 const& x)
{
glm::vec4 const a = glm::next_float(x); // return a float a ULP away from the float argument.
return glm::all(float_distance(a, x) == glm::ivec4(1)); // check both float are a single ULP away.
}
```
Include `<glm/ext/vector_ulp.hpp>` to use these features.
### <a name="section3_6"></a> 3.6. Matrix types
#### 3.6.1. GLM_EXT_matrix_float2x2
This extension exposes single-precision floating point vector with 2 columns by 2 rows: `mat2x2`.
Include `<glm/ext/matrix_float2x2.hpp>` to use these features.
#### 3.6.2. GLM_EXT_matrix_float2x3
This extension exposes single-precision floating point vector with 2 columns by 3 rows: `mat2x3`.
Include `<glm/ext/matrix_float2x3.hpp>` to use these features.
#### 3.6.3. GLM_EXT_matrix_float2x4
This extension exposes single-precision floating point vector with 2 columns by 4 rows: `mat2x4`.
Include `<glm/ext/matrix_float2x4.hpp>` to use these features.
#### 3.6.4. GLM_EXT_matrix_float3x2
This extension exposes single-precision floating point vector with 3 columns by 2 rows: `mat3x2`.
Include `<glm/ext/matrix_float3x2.hpp>` to use these features.
#### 3.6.5. GLM_EXT_matrix_float3x3
This extension exposes single-precision floating point vector with 3 columns by 3 rows: `mat3x3`.
Include `<glm/ext/matrix_float3x3.hpp>` to use these features.
#### 3.6.6. GLM_EXT_matrix_float3x4
This extension exposes single-precision floating point vector with 3 columns by 4 rows: `mat3x4`.
Include `<glm/ext/matrix_float3x4.hpp>` to use these features.
#### 3.6.7. GLM_EXT_matrix_float4x2
This extension exposes single-precision floating point vector with 4 columns by 2 rows: `mat4x2`.
Include `<glm/ext/matrix_float4x2.hpp>` to use these features.
#### 3.6.8. GLM_EXT_matrix_float4x3
This extension exposes single-precision floating point vector with 4 columns by 3 rows: `mat4x3`.
Include `<glm/ext/matrix_float4x3.hpp>` to use these features.
#### 3.6.9. GLM_EXT_matrix_float4x4
This extension exposes single-precision floating point vector with 4 columns by 4 rows: `mat4x4`.
Include `<glm/ext/matrix_float4x4.hpp>` to use these features.
#### 3.6.10. GLM_EXT_matrix_double2x2
This extension exposes double-precision floating point vector with 2 columns by 2 rows: `dmat2x2`.
Include `<glm/ext/matrix_double2x2.hpp>` to use these features.
#### 3.6.11. GLM_EXT_matrix_double2x3
This extension exposes double-precision floating point vector with 2 columns by 3 rows: `dmat2x3`.
Include `<glm/ext/matrix_double2x3.hpp>` to use these features.
#### 3.6.12. GLM_EXT_matrix_double2x4
This extension exposes double-precision floating point vector with 2 columns by 4 rows: `dmat2x4`.
Include `<glm/ext/matrix_double2x4.hpp>` to use these features.
#### 3.6.13. GLM_EXT_matrix_double3x2
This extension exposes double-precision floating point vector with 3 columns by 2 rows: `dmat3x2`.
Include `<glm/ext/matrix_double3x2.hpp>` to use these features.
#### 3.6.14. GLM_EXT_matrix_double3x3
This extension exposes double-precision floating point vector with 3 columns by 3 rows: `dmat3x3`.
Include `<glm/ext/matrix_double3x3.hpp>` to use these features.
#### 3.6.15. GLM_EXT_matrix_double3x4
This extension exposes double-precision floating point vector with 3 columns by 4 rows: `dmat3x4`.
Include `<glm/ext/matrix_double3x4.hpp>` to use these features.
#### 3.6.16. GLM_EXT_matrix_double4x2
This extension exposes double-precision floating point vector with 4 columns by 2 rows: `dmat4x2`.
Include `<glm/ext/matrix_double4x2.hpp>` to use these features.
#### 3.6.17. GLM_EXT_matrix_double4x3
This extension exposes double-precision floating point vector with 4 columns by 3 rows: `dmat4x3`.
Include `<glm/ext/matrix_double4x3.hpp>` to use these features.
#### 3.6.18. GLM_EXT_matrix_double4x4
This extension exposes double-precision floating point vector with 4 columns by 4 rows: `dmat4x4`.
Include `<glm/ext/matrix_double4x4.hpp>` to use these features.
### <a name="section3_7"></a> 3.7. Matrix types with precision qualifiers
#### 3.7.1. GLM_EXT_matrix_float2x2_precision
This extension exposes single-precision floating point vector with 2 columns by 2 rows using various precision in term of ULPs: `lowp_mat2x2`, `mediump_mat2x2` and `highp_mat2x2`.
Include `<glm/ext/matrix_float2x2_precision.hpp>` to use these features.
#### 3.7.2. GLM_EXT_matrix_float2x3_precision
This extension exposes single-precision floating point vector with 2 columns by 3 rows using various precision in term of ULPs: `lowp_mat2x3`, `mediump_mat2x3` and `highp_mat2x3`.
Include `<glm/ext/matrix_float2x3_precision.hpp>` to use these features.
#### 3.7.3. GLM_EXT_matrix_float2x4_precision
This extension exposes single-precision floating point vector with 2 columns by 4 rows using various precision in term of ULPs: `lowp_mat2x4`, `mediump_mat2x4` and `highp_mat2x4`.
Include `<glm/ext/matrix_float2x4_precision.hpp>` to use these features.
#### 3.7.4. GLM_EXT_matrix_float3x2_precision
This extension exposes single-precision floating point vector with 3 columns by 2 rows using various precision in term of ULPs: `lowp_mat3x2`, `mediump_mat3x2` and `highp_mat3x2`.
Include `<glm/ext/matrix_float3x2_precision.hpp>` to use these features.
#### 3.7.5. GLM_EXT_matrix_float3x3_precision
This extension exposes single-precision floating point vector with 3 columns by 3 rows using various precision in term of ULPs: `lowp_mat3x3`, `mediump_mat3x3` and `highp_mat3x3`.
Include `<glm/ext/matrix_float3x3_precision.hpp>` to use these features.
#### 3.7.6. GLM_EXT_matrix_float3x4_precision
This extension exposes single-precision floating point vector with 3 columns by 4 rows using various precision in term of ULPs: `lowp_mat3x4`, `mediump_mat3x4` and `highp_mat3x4`.
Include `<glm/ext/matrix_float3x4_precision.hpp>` to use these features.
#### 3.7.7. GLM_EXT_matrix_float4x2_precision
This extension exposes single-precision floating point vector with 4 columns by 2 rows using various precision in term of ULPs: `lowp_mat4x2`, `mediump_mat4x2` and `highp_mat4x2`.
Include `<glm/ext/matrix_float4x2_precision.hpp>` to use these features.
#### 3.7.8. GLM_EXT_matrix_float4x3_precision
This extension exposes single-precision floating point vector with 4 columns by 3 rows using various precision in term of ULPs: `lowp_mat4x3`, `mediump_mat4x3` and `highp_mat4x3`.
Include `<glm/ext/matrix_float4x3_precision.hpp>` to use these features.
#### 3.7.9. GLM_EXT_matrix_float4x4_precision
This extension exposes single-precision floating point vector with 4 columns by 4 rows using various precision in term of ULPs: `lowp_mat4x4`, `mediump_mat4x4` and `highp_mat4x4`.
Include `<glm/ext/matrix_float4x4_precision.hpp>` to use these features.
#### 3.7.10. GLM_EXT_matrix_double2x2_precision
This extension exposes double-precision floating point vector with 2 columns by 2 rows using various precision in term of ULPs: `lowp_dmat2x2`, `mediump_dmat2x2` and `highp_dmat2x2`.
Include `<glm/ext/matrix_double2x2_precision.hpp>` to use these features.
#### 3.7.11. GLM_EXT_matrix_double2x3_precision
This extension exposes double-precision floating point vector with 2 columns by 3 rows using various precision in term of ULPs: `lowp_dmat2x3`, `mediump_dmat2x3` and `highp_dmat2x3`.
Include `<glm/ext/matrix_double2x3_precision.hpp>` to use these features.
#### 3.7.12. GLM_EXT_matrix_double2x4_precision
This extension exposes double-precision floating point vector with 2 columns by 4 rows using various precision in term of ULPs: `lowp_dmat2x4`, `mediump_dmat2x4` and `highp_dmat2x4`.
Include `<glm/ext/matrix_double2x4_precision.hpp>` to use these features.
#### 3.7.13. GLM_EXT_matrix_double3x2_precision
This extension exposes double-precision floating point vector with 3 columns by 2 rows using various precision in term of ULPs: `lowp_dmat3x2`, `mediump_dmat3x2` and `highp_dmat3x2`.
Include `<glm/ext/matrix_double3x2_precision.hpp>` to use these features.
#### 3.7.14. GLM_EXT_matrix_double3x3_precision
This extension exposes double-precision floating point vector with 3 columns by 3 rows using various precision in term of ULPs: `lowp_dmat3x3`, `mediump_dmat3x3` and `highp_dmat3x3`.
Include `<glm/ext/matrix_double3x3_precision.hpp>` to use these features.
#### 3.7.15. GLM_EXT_matrix_double3x4_precision
This extension exposes double-precision floating point vector with 3 columns by 4 rows using various precision in term of ULPs: `lowp_dmat3x4`, `mediump_dmat3x4` and `highp_dmat3x4`.
Include `<glm/ext/matrix_double3x4_precision.hpp>` to use these features.
#### 3.7.16. GLM_EXT_matrix_double4x2_precision
This extension exposes double-precision floating point vector with 4 columns by 2 rows using various precision in term of ULPs: `lowp_dmat4x2`, `mediump_dmat4x2` and `highp_dmat4x2`.
Include `<glm/ext/matrix_double4x2_precision.hpp>` to use these features.
#### 3.7.17. GLM_EXT_matrix_double4x3_precision
This extension exposes double-precision floating point vector with 4 columns by 3 rows using various precision in term of ULPs: `lowp_dmat4x3`, `mediump_dmat4x3` and `highp_dmat4x3`.
Include `<glm/ext/matrix_double4x3_precision.hpp>` to use these features.
#### 3.7.18. GLM_EXT_matrix_double4x4_precision
This extension exposes double-precision floating point vector with 4 columns by 4 rows using various precision in term of ULPs: `lowp_dmat4x4`, `mediump_dmat4x4` and `highp_dmat4x4`.
Include `<glm/ext/matrix_double4x4_precision.hpp>` to use these features.
### <a name="section3_8"></a> 3.8. Matrix functions
#### 3.8.1. GLM_EXT_matrix_relational
This extension exposes `equal` and `notEqual` matrix variants which takes an optional epsilon argument.
```cpp
#include <glm/ext/vector_bool4.hpp> // bvec4
#include <glm/ext/matrix_float4x4.hpp> // mat4
#include <glm/ext/matrix_relational.hpp> // equal, all
bool epsilonEqual(glm::mat4 const& A, glm::mat4 const& B)
{
float const CustomEpsilon = 0.0001f;
glm::bvec4 const ColumnEqual = glm::equal(A, B, CustomEpsilon); // Evaluation per column
return glm::all(ColumnEqual);
}
```
Include `<glm/ext/matrix_relational.hpp>` to use these features.
#### 3.8.2. GLM_EXT_matrix_transform
This extension exposes matrix transformation functions: `translate`, `rotate` and `scale`.
```cpp
#include <glm/ext/vector_float2.hpp> // vec2
#include <glm/ext/vector_float3.hpp> // vec3
#include <glm/ext/matrix_float4x4.hpp> // mat4x4
#include <glm/ext/matrix_transform.hpp> // translate, rotate, scale, identity
glm::mat4 computeModelViewMatrix(float Translate, glm::vec2 const & Rotate)
{
glm::mat4 View = glm::translate(glm::identity(), glm::vec3(0.0f, 0.0f, -Translate));
View = glm::rotate(View, Rotate.y, glm::vec3(-1.0f, 0.0f, 0.0f));
View = glm::rotate(View, Rotate.x, glm::vec3(0.0f, 1.0f, 0.0f));
glm::mat4 Model = glm::scale(glm::identity(), glm::vec3(0.5f));
return View * Model;
}
```
Include `<glm/ext/matrix_transform.hpp>` to use these features.
#### 3.8.3. GLM_EXT_matrix_clip_space
This extension exposes functions to transform scenes into the clip space.
```cpp
#include <glm/ext/matrix_float4x4.hpp> // mat4x4
#include <glm/ext/matrix_clip_space.hpp> // perspective
#include <glm/trigonometric.hpp> // radians
glm::mat4 computeProjection(float Width, float Height)
{
return glm::perspective(glm::radians(45.0f), Width / Height, 0.1f, 100.f);
}
```
Include `<glm/ext/matrix_clip_space.hpp>` to use these features.
#### 3.8.4. GLM_EXT_matrix_projection
This extension exposes functions to map object coordinates into window coordinates and reverse
Include `<glm/ext/matrix_projection.hpp>` to use these features.
### <a name="section3_9"></a> 3.9. Quaternion types
#### 3.9.1. GLM_EXT_quaternion_float
This extension exposes single-precision floating point quaternion: `quat`.
Include `<glm/ext/quaternion_float.hpp>` to use these features.
#### 3.9.2. GLM_EXT_quaternion_double
This extension exposes double-precision floating point quaternion: `dquat`.
Include `<glm/ext/quaternion_double.hpp>` to use these features.
### <a name="section3_10"></a> 3.10. Quaternion types with precision qualifiers
#### 3.10.1. GLM_EXT_quaternion_float_precision
This extension exposes single-precision floating point quaternion using various precision in term of ULPs: `lowp_quat`, `mediump_quat` and `highp_quat`.
Include `<glm/ext/quaternion_float_precision.hpp>` to use these features.
#### 3.10.2. GLM_EXT_quaternion_double_precision
This extension exposes double-precision floating point quaternion using various precision in term of ULPs: `lowp_dquat`, `mediump_dquat` and `highp_dquat`.
Include `<glm/ext/quaternion_double_precision.hpp>` to use these features.
### <a name="section3_11"></a> 3.11. Quaternion functions
#### 3.11.1. GLM_EXT_quaternion_common
This extension exposes common quaternion functions such as `slerp`, `conjugate` and `inverse`.
Include `<glm/ext/quaternion_common.hpp>` to use these features.
#### 3.11.2. GLM_EXT_quaternion_geometric
This extension exposes geometric quaternion functions such as `length`, `normalize`, `dot` and `cross`.
Include `<glm/ext/quaternion_geometric.hpp>` to use these features.
#### 3.11.3. GLM_EXT_quaternion_trigonometric
This extension exposes trigonometric quaternion functions such as `angle` and `axis`.
Include `<glm/ext/quaternion_trigonometric.hpp>` to use these features.
#### 3.11.4. GLM_EXT_quaternion_exponential
This extensions expose exponential functions for quaternions such as `exp`, `log`, `pow` and `sqrt`.
Include `<glm/ext/quaternion_exponential.hpp>` to use these features.
#### 3.11.5. GLM_EXT_quaternion_relational
This extension exposes relational functions to compare quaternions.
Include `<glm/ext/quaternion_relational.hpp>` to use these features.
#### 3.11.6. GLM_EXT_quaternion_transform
This extension exposes functions to transform objects.
Include `<glm/ext/quaternion_transform.hpp>` to use these features.
---
<div style="page-break-after: always;"> </div>
## <a name="section4"></a> 4. Recommended extensions
GLM extends the core GLSL feature set with extensions. These extensions include: quaternion, transformation, spline, matrix inverse, color spaces, etc.
To include an extension, we only need to include the dedicated header file. Once included, the features are added to the GLM namespace.
```cpp
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
int foo()
{
glm::vec4 Position = glm::vec4(glm:: vec3(0.0f), 1.0f);
glm::mat4 Model = glm::translate(glm::mat4(1.0f), glm::vec3(1.0f));
glm::vec4 Transformed = Model * Position;
...
return 0;
}
```
When an extension is included, all the dependent core functionalities and extensions will be included as well.
### <a name="section4_1"></a> 4.1. GLM_GTC_bitfield
Fast bitfield operations on scalar and vector variables.
`<glm/gtc/bitfield.hpp>` need to be included to use these features.
### <a name="section4_2"></a> 4.2. GLM_GTC_color_space
Conversion between linear RGB and sRGB color spaces.
`<glm/gtc/color_space.hpp>` need to be included to use these features.
### <a name="section4_3"></a> 4.3. GLM_GTC_constants
Provide a list of built-in constants.
`<glm/gtc/constants.hpp>` need to be included to use these features.
### <a name="section4_4"></a> 4.4. GLM\_GTC\_epsilon
Approximate equality comparisons for floating-point numbers, possibly with a user-defined epsilon.
`<glm/gtc/epsilon.hpp>` need to be included to use these features.
### <a name="section4_5"></a> 4.5. GLM\_GTC\_integer
Integer variants of core GLM functions.
`<glm/gtc/integer.hpp>` need to be included to use these features.
### <a name="section4_6"></a> 4.6. GLM\_GTC\_matrix\_access
Functions to conveniently access the individual rows or columns of a matrix.
`<glm/gtc/matrix_access.hpp>` need to be included to use these features.
### <a name="section4_7"></a> 4.7. GLM\_GTC\_matrix\_integer
Integer matrix types similar to the core floating-point matrices. Some operations (such as inverse and determinant) are not supported.
`<glm/gtc/matrix_integer.hpp>` need to be included to use these features.
### <a name="section4_8"></a> 4.8. GLM\_GTC\_matrix\_inverse
Additional matrix inverse functions.
`<glm/gtc/matrix_inverse.hpp>` need to be included to use these features.
### <a name="section4_9"></a> 4.9. GLM\_GTC\_matrix\_transform
Matrix transformation functions that follow the OpenGL fixed-function conventions.
For example, the `lookAt` function generates a transformation matrix that projects world coordinates into eye coordinates suitable for projection matrices (e.g. `perspective`, `ortho`). See the OpenGL compatibility specifications for more information about the layout of these generated matrices.
The matrices generated by this extension use standard OpenGL fixed-function conventions. For example, the `lookAt` function generates a transform from world space into the specific eye space that the
projective matrix functions (`perspective`, `ortho`, etc) are designed to expect. The OpenGL compatibility specifications define the particular layout of this eye space.
`<glm/gtc/matrix_transform.hpp>` need to be included to use these features.
### <a name="section4_10"></a> 4.10. GLM\_GTC\_noise
Define 2D, 3D and 4D procedural noise functions.
`<glm/gtc/noise.hpp>` need to be included to use these features.
![](./doc/manual/noise-simplex1.jpg)
Figure 4.10.1: glm::simplex(glm::vec2(x / 16.f, y / 16.f));
![](./doc/manual/noise-simplex2.jpg)
Figure 4.10.2: glm::simplex(glm::vec3(x / 16.f, y / 16.f, 0.5f));
![](./doc/manual/noise-simplex3.jpg)
Figure 4.10.3: glm::simplex(glm::vec4(x / 16.f, y / 16.f, 0.5f, 0.5f));
![](./doc/manual/noise-perlin1.jpg)
Figure 4.10.4: glm::perlin(glm::vec2(x / 16.f, y / 16.f));
![](./doc/manual/noise-perlin2.jpg)
Figure 4.10.5: glm::perlin(glm::vec3(x / 16.f, y / 16.f, 0.5f));
![](./doc/manual/noise-perlin3.jpg)
Figure 4.10.6: glm::perlin(glm::vec4(x / 16.f, y / 16.f, 0.5f, 0.5f)));
![](./doc/manual/noise-perlin4.png)
Figure 4.10.7: glm::perlin(glm::vec2(x / 16.f, y / 16.f), glm::vec2(2.0f));
![](./doc/manual/noise-perlin5.png)
Figure 4.10.8: glm::perlin(glm::vec3(x / 16.f, y / 16.f, 0.5f), glm::vec3(2.0f));
![](./doc/manual/noise-perlin6.png)
Figure 4.10.9: glm::perlin(glm::vec4(x / 16.f, y / 16.f, glm::vec2(0.5f)), glm::vec4(2.0f));
### <a name="section4_11"></a> 4.11. GLM\_GTC\_packing
Convert scalar and vector types to and from packed formats, saving space at the cost of precision. However, packing a value into a format that it was previously unpacked from is guaranteed to be lossless.
`<glm/gtc/packing.hpp>` need to be included to use these features.
### <a name="section4_12"></a> 4.12. GLM\_GTC\_quaternion
Quaternions and operations upon thereof.
`<glm/gtc/quaternion.hpp>` need to be included to use these features.
### <a name="section4_13"></a> 4.13. GLM\_GTC\_random
Probability distributions in up to four dimensions.
`<glm/gtc/random.hpp>` need to be included to use these features.
![](./doc/manual/random-linearrand.png)
Figure 4.13.1: glm::vec4(glm::linearRand(glm::vec2(-1), glm::vec2(1)), 0, 1);
![](./doc/manual/random-circularrand.png)
Figure 4.13.2: glm::vec4(glm::circularRand(1.0f), 0, 1);
![](./doc/manual/random-sphericalrand.png)
Figure 4.13.3: glm::vec4(glm::sphericalRand(1.0f), 1);
![](./doc/manual/random-diskrand.png)
Figure 4.13.4: glm::vec4(glm::diskRand(1.0f), 0, 1);
![](./doc/manual/random-ballrand.png)
Figure 4.13.5: glm::vec4(glm::ballRand(1.0f), 1);
![](./doc/manual/random-gaussrand.png)
Figure 4.13.6: glm::vec4(glm::gaussRand(glm::vec3(0), glm::vec3(1)), 1);
### <a name="section4_14"></a> 4.14. GLM\_GTC\_reciprocal
Reciprocal trigonometric functions (e.g. secant, cosecant, tangent).
`<glm/gtc/reciprocal.hpp>` need to be included to use the features of this extension.
### <a name="section4_15"></a> 4.15. GLM\_GTC\_round
Various rounding operations and common special cases thereof.
`<glm/gtc/round.hpp>` need to be included to use the features of this extension.
### <a name="section4_16"></a> 4.16. GLM\_GTC\_type\_aligned
Aligned vector types.
`<glm/gtc/type_aligned.hpp>` need to be included to use the features of this extension.
### <a name="section4_17"></a> 4.17. GLM\_GTC\_type\_precision
Vector and matrix types with defined precisions, e.g. `i8vec4`, which is a 4D vector of signed 8-bit integers.
`<glm/gtc/type\_precision.hpp>` need to be included to use the features of this extension.
### <a name="section4_18"></a> 4.18. GLM\_GTC\_type\_ptr
Facilitate interactions between pointers to basic types (e.g. `float*`) and GLM types (e.g. `mat4`).
This extension defines an overloaded function, `glm::value_ptr`, which returns a pointer to the memory layout of any GLM vector or matrix (`vec3`, `mat4`, etc.). Matrix types store their values in column-major order. This is useful for uploading data to matrices or for copying data to buffer objects.
```cpp
// GLM_GTC_type_ptr provides a safe solution:
#include <glm/glm.hpp>
#include <glm/gtc/type_ptr.hpp>
void foo()
{
glm::vec4 v(0.0f);
glm::mat4 m(1.0f);
...
glVertex3fv(glm::value_ptr(v))
glLoadMatrixfv(glm::value_ptr(m));
}
// Another solution, this one inspired by the STL:
#include <glm/glm.hpp>
void foo()
{
glm::vec4 v(0.0f);
glm::mat4 m(1.0f);
...
glVertex3fv(&v[0]);
glLoadMatrixfv(&m[0][0]);
}
```
*Note: It would be possible to implement [`glVertex3fv`](http://www.opengl.org/sdk/docs/man2/xhtml/glVertex.xml)(glm::vec3(0)) in C++ with the appropriate cast operator that would result as an
implicit cast in this example. However cast operators may produce programs running with unexpected behaviours without build error or any form of notification.*
`<glm/gtc/type_ptr.hpp>` need to be included to use these features.
### <a name="section4_19"></a> 4.19. GLM\_GTC\_ulp
Measure a function's accuracy given a reference implementation of it. This extension works on floating-point data and provides results in [ULP](http://ljk.imag.fr/membres/Carine.Lucas/TPScilab/JMMuller/ulp-toms.pdf).
`<glm/gtc/ulp.hpp>` need to be included to use these features.
### <a name="section4_20"></a> 4.20. GLM\_GTC\_vec1
Add \*vec1 types.
`<glm/gtc/vec1.hpp>` need to be included to use these features.
---
<div style="page-break-after: always;"> </div>
## <a name="section5"></a> 5. OpenGL interoperability
### <a name="section5_1"></a> 5.1. GLM replacements for deprecated OpenGL functions
OpenGL 3.1 specification has deprecated some features that have been removed from OpenGL 3.2 core profile specification. GLM provides some replacement functions.
[***glRotate{f, d}:***](https://www.opengl.org/sdk/docs/man2/xhtml/glRotate.xml)
```cpp
glm::mat4 glm::rotate(glm::mat4 const& m, float angle, glm::vec3 const& axis);
glm::dmat4 glm::rotate(glm::dmat4 const& m, double angle, glm::dvec3 const& axis);
```
From `GLM_GTC_matrix_transform` extension: <glm/gtc/matrix\_transform.hpp>
[***glScale{f, d}:***](http://www.opengl.org/sdk/docs/man2/xhtml/glScale.xml)
```cpp
glm::mat4 glm::scale(glm::mat4 const& m, glm::vec3 const& factors);
glm::dmat4 glm::scale(glm::dmat4 const& m, glm::dvec3 const& factors);
```
From `GLM_GTC_matrix_transform` extension: <glm/gtc/matrix\_transform.hpp>
[***glTranslate{f, d}:***](https://www.opengl.org/sdk/docs/man2/xhtml/glTranslate.xml)
```cpp
glm::mat4 glm::translate(glm::mat4 const& m, glm::vec3 const& translation);
glm::dmat4 glm::translate(glm::dmat4 const& m, glm::dvec3 const& translation);
```
From `GLM_GTC_matrix_transform` extension: <glm/gtc/matrix\_transform.hpp>
[***glLoadIdentity:***](https://www.opengl.org/sdk/docs/man2/xhtml/glLoadIdentity.xml)
```cpp
glm::mat4(1.0) or glm::mat4();
glm::dmat4(1.0) or glm::dmat4();
```
From GLM core library: `<glm/glm.hpp>`
[***glMultMatrix{f, d}:***](https://www.opengl.org/sdk/docs/man2/xhtml/glMultMatrix.xml)
```cpp
glm::mat4() * glm::mat4();
glm::dmat4() * glm::dmat4();
```
From GLM core library: `<glm/glm.hpp>`
[***glLoadTransposeMatrix{f, d}:***](https://www.opengl.org/sdk/docs/man2/xhtml/glLoadTransposeMatrix.xml)
```cpp
glm::transpose(glm::mat4());
glm::transpose(glm::dmat4());
```
From GLM core library: `<glm/glm.hpp>`
[***glMultTransposeMatrix{f, d}:***](https://www.opengl.org/sdk/docs/man2/xhtml/glMultTransposeMatrix.xml)
```cpp
glm::mat4() * glm::transpose(glm::mat4());
glm::dmat4() * glm::transpose(glm::dmat4());
```
From GLM core library: `<glm/glm.hpp>`
[***glFrustum:***](http://www.opengl.org/sdk/docs/man2/xhtml/glFrustum.xml)
```cpp
glm::mat4 glm::frustum(float left, float right, float bottom, float top, float zNear, float zFar);
glm::dmat4 glm::frustum(double left, double right, double bottom, double top, double zNear, double zFar);
```
From `GLM_GTC_matrix_transform` extension: `<glm/gtc/matrix_transform.hpp>`
[***glOrtho:***](https://www.opengl.org/sdk/docs/man2/xhtml/glOrtho.xml)
```cpp
glm::mat4 glm::ortho(float left, float right, float bottom, float top, float zNear, float zFar);
glm::dmat4 glm::ortho(double left, double right, double bottom, double top, double zNear, double zFar);
```
From `GLM_GTC_matrix_transform` extension: `<glm/gtc/matrix_transform.hpp>`
### <a name="section5_2"></a> 5.2. GLM replacements for GLU functions
[***gluLookAt:***](https://www.opengl.org/sdk/docs/man2/xhtml/gluLookAt.xml)
```cpp
glm::mat4 glm::lookAt(glm::vec3 const& eye, glm::vec3 const& center, glm::vec3 const& up);
glm::dmat4 glm::lookAt(glm::dvec3 const& eye, glm::dvec3 const& center, glm::dvec3 const& up);
```
From `GLM_GTC_matrix_transform` extension: `<glm/gtc/matrix_transform.hpp>`
[***gluOrtho2D:***](https://www.opengl.org/sdk/docs/man2/xhtml/gluOrtho2D.xml)
```cpp
glm::mat4 glm::ortho(float left, float right, float bottom, float top);
glm::dmat4 glm::ortho(double left, double right, double bottom, double top);
```
From `GLM_GTC_matrix_transform` extension: `<glm/gtc/matrix_transform.hpp>`
[***gluPerspective:***](https://www.opengl.org/sdk/docs/man2/xhtml/gluPerspective.xml)
```cpp
glm::mat4 perspective(float fovy, float aspect, float zNear, float zFar);
glm::dmat4 perspective(double fovy, double aspect, double zNear, double zFar);
```
Note that in GLM, fovy is expressed in radians, not degrees.
From `GLM_GTC_matrix_transform` extension: `<glm/gtc/matrix_transform.hpp>`
[***gluPickMatrix:***](https://www.opengl.org/sdk/docs/man2/xhtml/gluPickMatrix.xml)
```cpp
glm::mat4 pickMatrix(glm::vec2 const& center, glm::vec2 const& delta, glm::ivec4 const& viewport);
glm::dmat4 pickMatrix(glm::dvec2 const& center, glm::dvec2 const& delta, glm::ivec4 const& viewport);
```
From `GLM_GTC_matrix_transform` extension: `<glm/gtc/matrix_transform.hpp>`
[***gluProject:***](http://www.opengl.org/sdk/docs/man2/xhtml/gluProject.xml)
```cpp
glm::vec3 project(glm::vec3 const& obj, glm::mat4 const& model, glm::mat4 const& proj, glm::ivec4 const& viewport);
glm::dvec3 project(glm::dvec3 const& obj, glm::dmat4 const& model, glm::dmat4 const& proj, glm::ivec4 const& viewport);
```
From `GLM_GTC_matrix_transform` extension: `<glm/gtc/matrix_transform.hpp>`
[***gluUnProject:***](https://www.opengl.org/sdk/docs/man2/xhtml/gluUnProject.xml)
```cpp
glm::vec3 unProject(glm::vec3 const& win, glm::mat4 const& model, glm::mat4 const& proj, glm::ivec4 const& viewport);
glm::dvec3 unProject(glm::dvec3 const& win, glm::dmat4 const& model, glm::dmat4 const& proj, glm::ivec4 const& viewport);
```
From `GLM_GTC_matrix_transform` extension: `<glm/gtc/matrix_transform.hpp>`
---
<div style="page-break-after: always;"> </div>
## <a name="section6"></a> 6. Known issues
This section reports GLSL features that GLM can't accurately emulate due to language restrictions.
### <a name="section6_1"></a> 6.1. not function
The GLSL function 'not' is a keyword in C++. To prevent name collisions and ensure a consistent API, the name `not\_` (note the underscore) is used instead.
### <a name="section6_2"></a> 6.2. Precision qualifiers support
GLM supports GLSL precision qualifiers through prefixes instead of qualifiers. For example, GLM exposes \verb|lowp_vec4|, \verb|mediump_vec4| and \verb|highp_vec4| as variations of \verb|vec4|.
Similarly to GLSL, GLM precision qualifiers are used to trade precision of operations in term of [ULPs](http://en.wikipedia.org/wiki/Unit_in_the_last_place) for better performance. By default, all the types use high precision.
```cpp
// Using precision qualifier in GLSL:
ivec3 foo(in vec4 v)
{
highp vec4 a = v;
mediump vec4 b = a;
lowp ivec3 c = ivec3(b);
return c;
}
// Using precision qualifier in GLM:
#include <glm/glm.hpp>
ivec3 foo(const vec4 & v)
{
highp_vec4 a = v;
medium_vec4 b = a;
lowp_ivec3 c = glm::ivec3(b);
return c;
}
```
---
<div style="page-break-after: always;"> </div>
## <a name="section7"></a> 7. FAQ
### <a name="section7_1"></a> 7.1 Why GLM follows GLSL specification and conventions?
Following GLSL conventions is a really strict policy of GLM. It has been designed following the idea that everyone does its own math library with his own conventions. The idea is that brilliant developers (the OpenGL ARB) worked together and agreed to make GLSL. Following GLSL conventions
is a way to find consensus. Moreover, basically when a developer knows GLSL, he knows GLM.
### <a name="section7_2"></a> 7.2. Does GLM run GLSL program?
No, GLM is a C++ implementation of a subset of GLSL.
### <a name="section7_3"></a> 7.3. Does a GLSL compiler build GLM codes?
No, this is not what GLM attends to do.
### <a name="section7_4"></a> 7.4. Should I use ‘GTX’ extensions?
GTX extensions are qualified to be experimental extensions. In GLM this means that these extensions might change from version to version without any restriction. In practice, it doesn’t really change except time to
time. GTC extensions are stabled, tested and perfectly reliable in time. Many GTX extensions extend GTC extensions and provide a way to explore features and implementations and APIs and then are promoted to GTC
extensions. This is fairly the way OpenGL features are developed; through extensions.
Stating with GLM 0.9.9, to use experimental extensions, an application must define GLM_ENABLE_EXPERIMENTAL.
### <a name="section7_5"></a> 7.5. Where can I ask my questions?
A good place is [stackoverflow](http://stackoverflow.com/search?q=GLM) using the GLM tag.
### <a name="section7_6"></a> 7.6. Where can I find the documentation of extensions?
The Doxygen generated documentation includes a complete list of all extensions available. Explore this [*API documentation*](http://glm.g-truc.net/html/index.html) to get a complete
view of all GLM capabilities!
### <a name="section7_7"></a> 7.7. Should I use ‘using namespace glm;’?
NO! Chances are that if using namespace glm; is called, especially in a header file, name collisions will happen as GLM is based on GLSL which uses common tokens for types and functions. Avoiding using namespace
glm; will a higher compatibility with third party library and SDKs.
### <a name="section7_8"></a> 7.8. Is GLM fast?
GLM is mainly designed to be convenient and that's why it is written against the GLSL specification.
Following the Pareto principle where 20% of the code consumes 80% of the execution time, GLM operates perfectly on the 80% of the code that consumes 20% of the performances. Furthermore, thanks to the lowp,
mediump and highp qualifiers, GLM provides approximations which trade precision for performance. Finally, GLM can automatically produce SIMD optimized code for functions of its implementation.
However, on performance critical code paths, we should expect that dedicated algorithms should be written to reach peak performance.
### <a name="section7_9"></a> 7.9. When I build with Visual C++ with /W4 warning level, I have warnings...
You should not have any warnings even in `/W4` mode. However, if you expect such level for your code, then you should ask for the same level to the compiler by at least disabling the Visual C++ language extensions
(`/Za`) which generates warnings when used. If these extensions are enabled, then GLM will take advantage of them and the compiler will generate warnings.
### <a name="section7_10"></a> 7.10. Why some GLM functions can crash because of division by zero?
GLM functions crashing is the result of a domain error. Such behavior follows the precedent set by C and C++'s standard library. For example, it’s a domain error to pass a null vector (all zeroes) to glm::normalize function, or to pass a negative number into std::sqrt.
### <a name="section7_11"></a> 7.11. What unit for angles is used in GLM?
GLSL is using radians but GLU is using degrees to express angles. This has caused GLM to use inconsistent units for angles. Starting with GLM 0.9.6, all GLM functions are using radians. For more information, follow
the [link](http://www.g-truc.net/post-0693.html#menu).
### <a name="section7_12"></a> 7.12. Windows headers cause build errors...
Some Windows headers define min and max as macros which may cause compatibility with third party libraries such as GLM.
It is highly recommended to [`define NOMINMAX`](http://stackoverflow.com/questions/4913922/possible-problems-with-nominmax-on-visual-c) before including Windows headers to workaround this issue.
To workaround the incompatibility with these macros, GLM will systematically undef these macros if they are defined.
### <a name="section7_13"></a> 7.13. Constant expressions support
GLM has some C++ [constant expressions](http://en.cppreference.com/w/cpp/language/constexpr) support. However, GLM automatically detects the use of SIMD instruction sets through compiler arguments to populate its implementation with SIMD intrinsics.
Unfortunately, GCC and Clang doesn't support SIMD instrinsics as constant expressions. To allow constant expressions on all vectors and matrices types, define `GLM_FORCE_PURE` before including GLM headers.
---
<div style="page-break-after: always;"> </div>
## <a name="section8"></a> 8. Code samples
This series of samples only shows various GLM features without consideration of any sort.
### <a name="section8_1"></a> 8.1. Compute a triangle normal
```cpp
#include <glm/glm.hpp> // vec3 normalize cross
glm::vec3 computeNormal(glm::vec3 const& a, glm::vec3 const& b, glm::vec3 const& c)
{
return glm::normalize(glm::cross(c - a, b - a));
}
// A much faster but less accurate alternative:
#include <glm/glm.hpp> // vec3 cross
#include <glm/gtx/fast_square_root.hpp> // fastNormalize
glm::vec3 computeNormal(glm::vec3 const& a, glm::vec3 const& b, glm::vec3 const& c)
{
return glm::fastNormalize(glm::cross(c - a, b - a));
}
```
### <a name="section8_2"></a> 8.2. Matrix transform
```cpp
#include <glm/glm.hpp> // vec3, vec4, ivec4, mat4
#include <glm/gtc/matrix_transform.hpp> // translate, rotate, scale, perspective
#include <glm/gtc/type_ptr.hpp> // value_ptr
void setUniformMVP(GLuint Location, glm::vec3 const& Translate, glm::vec3 const& Rotate)
{
glm::mat4 Projection = glm::perspective(45.0f, 4.0f / 3.0f, 0.1f, 100.f);
glm::mat4 ViewTranslate = glm::translate(
glm::mat4(1.0f), Translate);
glm::mat4 ViewRotateX = glm::rotate(
ViewTranslate, Rotate.y, glm::vec3(-1.0f, 0.0f, 0.0f));
glm::mat4 View = glm::rotate(ViewRotateX,
Rotate.x, glm::vec3(0.0f, 1.0f, 0.0f));
glm::mat4 Model = glm::scale(
glm::mat4(1.0f), glm::vec3(0.5f));
glm::mat4 MVP = Projection * View * Model;
glUniformMatrix4fv(Location, 1, GL_FALSE, glm::value_ptr(MVP));
}
```
### <a name="section8_3"></a> 8.3. Vector types
```cpp
#include <glm/glm.hpp> // vec2
#include <glm/gtc/type_precision.hpp> // hvec2, i8vec2, i32vec2
std::size_t const VertexCount = 4;
// Float quad geometry
std::size_t const PositionSizeF32 = VertexCount * sizeof(glm::vec2);
glm::vec2 const PositionDataF32[VertexCount] =
{
glm::vec2(-1.0f,-1.0f),
glm::vec2( 1.0f,-1.0f),
glm::vec2( 1.0f, 1.0f),
glm::vec2(-1.0f, 1.0f)
};
// Half-float quad geometry
std::size_t const PositionSizeF16 = VertexCount * sizeof(glm::hvec2);
glm::hvec2 const PositionDataF16[VertexCount] =
{
glm::hvec2(-1.0f, -1.0f),
glm::hvec2( 1.0f, -1.0f),
glm::hvec2( 1.0f, 1.0f),
glm::hvec2(-1.0f, 1.0f)
};
// 8 bits signed integer quad geometry
std::size_t const PositionSizeI8 = VertexCount * sizeof(glm::i8vec2);
glm::i8vec2 const PositionDataI8[VertexCount] =
{
glm::i8vec2(-1,-1),
glm::i8vec2( 1,-1),
glm::i8vec2( 1, 1),
glm::i8vec2(-1, 1)
};
// 32 bits signed integer quad geometry
std::size_t const PositionSizeI32 = VertexCount * sizeof(glm::i32vec2);
glm::i32vec2 const PositionDataI32[VertexCount] =
{
glm::i32vec2(-1,-1),
glm::i32vec2( 1,-1),
glm::i32vec2( 1, 1),
glm::i32vec2(-1, 1)
};
```
### <a name="section8_4"></a> 8.4. Lighting
```cpp
#include <glm/glm.hpp> // vec3 normalize reflect dot pow
#include <glm/gtc/random.hpp> // ballRand
// vecRand3, generate a random and equiprobable normalized vec3
glm::vec3 lighting(intersection const& Intersection, material const& Material, light const& Light, glm::vec3 const& View)
{
glm::vec3 Color = glm::vec3(0.0f);
glm::vec3 LightVertor = glm::normalize(
Light.position() - Intersection.globalPosition() +
glm::ballRand(0.0f, Light.inaccuracy());
if(!shadow(Intersection.globalPosition(), Light.position(), LightVertor))
{
float Diffuse = glm::dot(Intersection.normal(), LightVector);
if(Diffuse <= 0.0f)
return Color;
if(Material.isDiffuse())
Color += Light.color() * Material.diffuse() * Diffuse;
if(Material.isSpecular())
{
glm::vec3 Reflect = glm::reflect(-LightVector, Intersection.normal());
float Dot = glm::dot(Reflect, View);
float Base = Dot > 0.0f ? Dot : 0.0f;
float Specular = glm::pow(Base, Material.exponent());
Color += Material.specular() \* Specular;
}
}
return Color;
}
```
---
<div style="page-break-after: always;"> </div>
## <a name="section9"></a> 9. Contributing to GLM
### <a name="section9_1"></a> 9.1. Submitting bug reports
Bug should be reported on Github using the [issue page](https://github.com/g-truc/glm/issues).
A minimal code to reproduce the issue will help.
Additional, bugs can be configuration specific. We can report the configuration by defining `GLM_FORCE_MESSAGES` before including GLM headers then build and copy paste the build messages GLM will output.
```cpp
#define GLM_FORCE_MESSAGES
#include <glm/glm.hpp>
```
An example of build messages generated by GLM:
```plaintext
GLM: 0.9.9.1
GLM: C++ 17 with extensions
GLM: GCC compiler detected"
GLM: x86 64 bits with AVX instruction set build target
GLM: Linux platform detected
GLM: GLM_FORCE_SWIZZLE is undefined. swizzling functions or operators are disabled.
GLM: GLM_FORCE_SIZE_T_LENGTH is undefined. .length() returns a glm::length_t, a typedef of int following GLSL.
GLM: GLM_FORCE_UNRESTRICTED_GENTYPE is undefined. Follows strictly GLSL on valid function genTypes.
GLM: GLM_FORCE_DEPTH_ZERO_TO_ONE is undefined. Using negative one to one depth clip space.
GLM: GLM_FORCE_LEFT_HANDED is undefined. Using right handed coordinate system.
```
### <a name="section9_2"></a> 9.2. Contributing to GLM with pull request
This tutorial will show us how to successfully contribute a bug-fix to GLM using GitHub's Pull Request workflow.
We will be typing git commands in the Terminal. Mac and Linux users may have git pre-installed. You can download git from [here](http://git-scm.com/downloads).
The tutorial assumes you have some basic understanding of git concepts - repositories, branches, commits, etc. Explaining it all from scratch is beyond the scope of this tutorial. Some good links to learn git basics are: [Link 1](http://git-scm.com/book/en/Getting-Started-Git-Basics), [Link 2](https://www.atlassian.com/git/tutorial/git-basics)
#### Step 1: Setup our GLM Fork
We will make our changes in our own copy of the GLM sitory. On the GLM GitHub repo and we press the Fork button.
We need to download a copy of our fork to our local machine. In the terminal, type:
```plaintext
>>> git clone <our-repository-fork-git-url>
```
This will clone our fork repository into the current folder.
We can find our repository git url on the Github reposotory page. The url looks like this: `https://github.com/<our-username>/<repository-name>.git`
#### Step 2: Synchronizing our fork
We can use the following command to add `upstream` (original project repository) as a remote repository so that we can fetch the latest GLM commits into our branch and keep our forked copy is synchronized.
```plaintext
>>> git remote add upstream https://github.com/processing/processing.git
```
To synchronize our fork to the latest commit in the GLM repository, we can use the following command:
```plaintext
>>> git fetch upstream
```
Then, we can merge the remote master branch to our current branch:
```plaintext
>>> git merge upstream/master
```
Now our local copy of our fork has been synchronized. However, the fork's copy is not updated on GitHub's servers yet. To do that, use:
```plaintext
>>> git push origin master
```
#### Step 3: Modifying our GLM Fork
Our fork is now setup and we are ready to modify GLM to fix a bug.
It's a good practice to make changes in our fork in a separate branch than the master branch because we can submit only one pull request per branch.
Before creating a new branch, it's best to synchronize our fork and then create a new branch from the latest master branch.
If we are not on the master branch, we should switch to it using:
```plaintext
>>> git checkout master
```
To create a new branch called `bugifx`, we use:
```plaintext
git branch bugfix
```
Once the code changes for the fix is done, we need to commit the changes:
```plaintext
>>> git commit -m "Resolve the issue that caused problem with a specific fix #432"
```
The commit message should be as specific as possible and finished by the bug number in the [GLM GitHub issue page](https://github.com/g-truc/glm/issues)
Finally, we need to push our changes in our branch to our GitHub fork using:
```plaintext
>>> git push origin bugfix
```
Some things to keep in mind for a pull request:
* Keep it minimal: Try to make the minimum required changes to fix the issue. If we have added any debugging code, we should remove it.
* A fix at a time: The pull request should deal with one issue at a time only, unless two issue are so interlinked they must be fixed together.
* Write a test: GLM is largely unit tests. Unit tests are in `glm/test` directory. We should also add tests for the fixes we provide to ensure future regression doesn't happen.
* No whitespace changes: Avoid unnecessary formatting or whitespace changes in other parts of the code. Be careful with auto-format options in the code editor which can cause wide scale formatting changes.
* Follow [GLM Code Style](#section9_3) for consistency.
* Tests passes: Make sure GLM build and tests don't fail because of the changes.
#### Step 4: Submitting a Pull Request
We need to submit a pull request from the `bugfix` branch to GLM's master branch.
On the fork github page, we can click on the *Pull Request* button. Then we can describe our pull request. Finally we press *Send Pull Request*.
Please be patient and give them some time to go through it.
The pull request review may suggest additional changes. So we can make those changes in our branch, and push those changes to our fork repository. Our pull request will always include the latest changes in our branch on GitHub, so we don't need to resubmit the pull request.
Once your changes have been accepted, a project maintainer will merge our pull request.
We are grateful to the users for their time and effort in contributing fixes.
### <a name="section9_3"></a> 9.3. Coding style
#### Indentation
Always tabs. Never spaces.
#### Spacing
No space after if. Use if(blah) not if (blah). Example if/else block:
```cpp
if(blah)
{
// yes like this
}
else
{
// something besides
}
```
Single line if blocks:
```cpp
if(blah)
// yes like this
else
// something besides
```
No spaces inside parens:
```cpp
if (blah) // No
if( blah ) // No
if ( blah ) // No
if(blah) // Yes
```
Use spaces before/after commas:
```cpp
someFunction(apple,bear,cat); // No
someFunction(apple, bear, cat); // Yes
```
Use spaces before/after use of `+, -, *, /, %, >>, <<, |, &, ^, ||, &&` operators:
```cpp
vec4 v = a + b;
```
#### Blank lines
One blank line after the function blocks.
#### Comments
Always one space after the // in single line comments
One space before // at the end of a line (that has code as well)
Try to use // comments inside functions, to make it easier to remove a whole block via /\* \*/
#### Cases
```cpp
#define GLM_MY_DEFINE 76
class myClass
{};
myClass const MyClass;
namespace glm{ // glm namespace is for public code
namespace detail // glm::detail namespace is for implementation detail
{
float myFunction(vec2 const& V)
{
return V.x + V.y;
}
float myFunction(vec2 const* const V)
{
return V->x + V->y;
}
}//namespace detail
}//namespace glm
```
---
<div style="page-break-after: always;"> </div>
## <a name="section10"></a> 10. References
### <a name="section10_1"></a> 10.1. OpenGL specifications
* OpenGL 4.3 core specification
* [GLSL 4.30 specification](http://www.opengl.org/registry/doc/GLSLangSpec.4.30.7.diff.pdf)
![](media/image21.png){width="2.859722222222222in" height="1.6083333333333334in"}- [*GLU 1.3 specification*](http://www.opengl.org/documentation/specs/glu/glu1_3.pdf)
### <a name="section10_2"></a> 10.2. External links
* [GLM on stackoverflow](http://stackoverflow.com/search?q=GLM)
### <a name="section10_3"></a> 10.3. Projects using GLM
***[Leo’s Fortune](http://www.leosfortune.com/)***
Leo’s Fortune is a platform adventure game where you hunt down the cunning and mysterious thief that stole your gold. Available on PS4, Xbox One, PC, Mac, iOS and Android.
Beautifully hand-crafted levels bring the story of Leo to life in this epic adventure.
“I just returned home to find all my gold has been stolen! For some devious purpose, the thief has dropped pieces of my gold like breadcrumbs through the woods.”
“Despite this pickle of a trap, I am left with no choice but to follow the trail.”
“Whatever lies ahead, I must recover my fortune.” -Leopold
![](./doc/manual/references-leosfortune.jpeg)
![](./doc/manual/references-leosfortune2.jpg)
[***OpenGL 4.0 Shading Language Cookbook***](http://www.packtpub.com/opengl-4-0-shading-language-cookbook/book?tag=rk/opengl4-abr1/0811)
A set of recipes that demonstrates a wide of techniques for producing high-quality, real-time 3D graphics with GLSL 4.0, such as:
* Using GLSL 4.0 to implement lighting and shading techniques.
* Using the new features of GLSL 4.0 including tessellation and geometry shaders.
* Using textures in GLSL as part of a wide variety of techniques from basic texture mapping to deferred shading.
Simple, easy-to-follow examples with GLSL source code are provided, as well as a basic description of the theory behind each technique.
![](./doc/manual/references-glsl4book.jpg)
[***Outerra***](http://outerra.com/)
A 3D planetary engine for seamless planet rendering from space down to the surface. Can use arbitrary resolution of elevation data, refining it to centimetre resolution using fractal algorithms.
![](./doc/manual/references-outerra1.jpg)
![](./doc/manual/references-outerra2.jpg)
![](./doc/manual/references-outerra3.jpg)
![](./doc/manual/references-outerra4.jpg)
[***Falcor***](https://github.com/NVIDIA/Falcor)
Real-time rendering research framework by NVIDIA.
[***Cinder***](https://libcinder.org/)
Cinder is a free and open source library for professional-quality creative coding in C++.
Cinder is a C++ library for programming with aesthetic intent - the sort of development often called creative coding. This includes domains like graphics, audio, video, and computational geometry. Cinder is cross-platform, with official support for OS X, Windows, iOS, and WinRT.
Cinder is production-proven, powerful enough to be the primary tool for professionals, but still suitable for learning and experimentation. Cinder is released under the [2-Clause BSD License](http://opensource.org/licenses/BSD-2-Clause).
![](./doc/manual/references-cinder.png)
[***opencloth***](https://github.com/mmmovania/opencloth/)
A collection of source codes implementing cloth simulation algorithms in OpenGL.
Simple, easy-to-follow examples with GLSL source code, as well as a basic description of the theory behind each technique.
![](./doc/manual/references-opencloth1.png)
![](./doc/manual/references-opencloth3.png)
[***LibreOffice***](https://www.libreoffice.org/)
LibreOffice includes several applications that make it the most powerful Free and Open Source office suite on the market.
[***Are you using GLM in a project?***](mailto:glm@g-truc.net)
### <a name="section10_4"></a> 10.4. Tutorials using GLM
* [Sascha Willems' Vulkan examples](https://github.com/SaschaWillems/Vulkan), Examples and demos for the new Vulkan API
* [VKTS](https://github.com/McNopper/Vulkan) Vulkan examples using VulKan ToolS (VKTS)
* [*The OpenGL Samples Pack*](http://www.g-truc.net/project-0026.html#menu), samples that show how to set up all the different new features
* [*Learning Modern 3D Graphics programming*](http://www.arcsynthesis.org/gltut/), a great OpenGL tutorial using GLM by Jason L. McKesson
* [*Morten Nobel-Jørgensen’s*](http://blog.nobel-joergensen.com/2011/04/02/glm-brilliant-math-library-for-opengl/) review and use an [*OpenGL renderer*](https://github.com/mortennobel/RenderE)
* [*Swiftless’ OpenGL tutorial*](http://www.swiftless.com/opengltuts.html) using GLM by Donald Urquhart
* [*Rastergrid*](http://rastergrid.com/blog/), many technical articles with companion programs using GLM by Daniel Rákos\
* [*OpenGL Tutorial*](http://www.opengl-tutorial.org), tutorials for OpenGL 3.1 and later
* [*OpenGL Programming on Wikibooks*](http://en.wikibooks.org/wiki/OpenGL_Programming): For beginners who are discovering OpenGL.
* [*3D Game Engine Programming*](http://3dgep.com/): Learning the latest 3D Game Engine Programming techniques.
* [Game Tutorials](http://www.gametutorials.com/opengl-4-matrices-and-glm/), graphics and game programming.
* [open.gl](https://open.gl/), OpenGL tutorial
* [c-jump](http://www.c-jump.com/bcc/common/Talk3/Math/GLM/GLM.html), GLM tutorial
* [Learn OpenGL](http://learnopengl.com/), OpenGL tutorial
* [***Are you using GLM in a tutorial?***](mailto:glm@g-truc.net)
### <a name="section10_5"></a> 10.5. Equivalent for other languages
* [*cglm*](https://github.com/recp/cglm): OpenGL Mathematics (glm) for C.
* [*GlmSharp*](https://github.com/Philip-Trettner/GlmSharp): Open-source semi-generated GLM-flavored math library for .NET/C\#.
* [glm-js](https://github.com/humbletim/glm-js): JavaScript adaptation of the OpenGL Mathematics (GLM) C++ library interfaces
* [JVM OpenGL Mathematics (GLM)](https://github.com/kotlin-graphics/glm): written in Kotlin, Java compatible
* [JGLM](https://github.com/jroyalty/jglm) - Java OpenGL Mathematics Library
* [SwiftGL Math Library](https://github.com/SwiftGL/Math/blob/master/Sources/glm.swift) GLM for Swift
* [glm-go](https://github.com/jbowtie/glm-go): Simple linear algebra library similar in spirit to GLM
* [openll](https://github.com/Polkm/openll): Lua bindings for OpenGL, GLM, GLFW, OpenAL, SOIL and PhysicsFS
* [glm-rs](https://github.com/dche/glm-rs): GLSL mathematics for Rust programming language
* [glmpython](https://github.com/Queatz/glmpython): GLM math library for Python
### <a name="section10_6"></a> 10.6. Alternatives to GLM
* [*CML*](http://cmldev.net/): The CML (Configurable Math Library) is a free C++ math library for games and graphics.
* [*Eigen*](http://eigen.tuxfamily.org/): A more heavy weight math library for general linear algebra in C++.
* [*glhlib*](http://glhlib.sourceforge.net/): A much more than glu C library.
* Are you using or developing an alternative library to GLM?
### <a name="section10_7"></a> 10.7. Acknowledgements
GLM is developed and maintained by [*Christophe Riccio*](http://www.g-truc.net) but many contributors have made this project what it is.
Special thanks to:
* Ashima Arts and Stefan Gustavson for their work on [*webgl-noise*](https://github.com/ashima/webgl-noise) which has been used for GLM noises implementation.
* [*Arthur Winters*](http://athile.net/library/wiki/index.php?title=Athile_Technologies) for the C++11 and Visual C++ swizzle operators implementation and tests.
* Joshua Smith and Christoph Schied for the discussions and the experiments around the swizzle operators implementation issues.
* Guillaume Chevallereau for providing and maintaining the [*nightlight build system*](http://my.cdash.org/index.php?project=GLM).
* Ghenadii Ursachi for GLM\_GTX\_matrix\_interpolation implementation.
* Mathieu Roumillac for providing some implementation ideas.
* [*Grant James*](http://www.zeuscmd.com/) for the implementation of all combination of none-squared matrix products.
* Jesse Talavera-Greenberg for his work on the manual amount other things.
* All the GLM users that have report bugs and hence help GLM to become a great library!
|