File size: 5,382 Bytes
2fdce3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import gradio as gr
from easygui import msgbox
import subprocess
import os
from .common_gui import get_saveasfilename_path, get_file_path
from library.custom_logging import setup_logging
# Set up logging
log = setup_logging()
PYTHON = 'python3' if os.name == 'posix' else './venv/Scripts/python.exe'
folder_symbol = '\U0001f4c2' # π
refresh_symbol = '\U0001f504' # π
save_style_symbol = '\U0001f4be' # πΎ
document_symbol = '\U0001F4C4' # π
def resize_lora(
model,
new_rank,
save_to,
save_precision,
device,
dynamic_method,
dynamic_param,
verbose,
):
# Check for caption_text_input
if model == '':
msgbox('Invalid model file')
return
# Check if source model exist
if not os.path.isfile(model):
msgbox('The provided model is not a file')
return
if dynamic_method == 'sv_ratio':
if float(dynamic_param) < 2:
msgbox(
f'Dynamic parameter for {dynamic_method} need to be 2 or greater...'
)
return
if dynamic_method == 'sv_fro' or dynamic_method == 'sv_cumulative':
if float(dynamic_param) < 0 or float(dynamic_param) > 1:
msgbox(
f'Dynamic parameter for {dynamic_method} need to be between 0 and 1...'
)
return
# Check if save_to end with one of the defines extension. If not add .safetensors.
if not save_to.endswith(('.pt', '.safetensors')):
save_to += '.safetensors'
if device == '':
device = 'cuda'
run_cmd = f'{PYTHON} "{os.path.join("networks","resize_lora.py")}"'
run_cmd += f' --save_precision {save_precision}'
run_cmd += f' --save_to "{save_to}"'
run_cmd += f' --model "{model}"'
run_cmd += f' --new_rank {new_rank}'
run_cmd += f' --device {device}'
if not dynamic_method == 'None':
run_cmd += f' --dynamic_method {dynamic_method}'
run_cmd += f' --dynamic_param {dynamic_param}'
if verbose:
run_cmd += f' --verbose'
log.info(run_cmd)
# Run the command
if os.name == 'posix':
os.system(run_cmd)
else:
subprocess.run(run_cmd)
log.info('Done resizing...')
###
# Gradio UI
###
def gradio_resize_lora_tab(headless=False):
with gr.Tab('Resize LoRA'):
gr.Markdown('This utility can resize a LoRA.')
lora_ext = gr.Textbox(value='*.safetensors *.pt', visible=False)
lora_ext_name = gr.Textbox(value='LoRA model types', visible=False)
with gr.Row():
model = gr.Textbox(
label='Source LoRA',
placeholder='Path to the LoRA to resize',
interactive=True,
)
button_lora_a_model_file = gr.Button(
folder_symbol,
elem_id='open_folder_small',
visible=(not headless),
)
button_lora_a_model_file.click(
get_file_path,
inputs=[model, lora_ext, lora_ext_name],
outputs=model,
show_progress=False,
)
with gr.Row():
save_to = gr.Textbox(
label='Save to',
placeholder='path for the LoRA file to save...',
interactive=True,
)
button_save_to = gr.Button(
folder_symbol,
elem_id='open_folder_small',
visible=(not headless),
)
button_save_to.click(
get_saveasfilename_path,
inputs=[save_to, lora_ext, lora_ext_name],
outputs=save_to,
show_progress=False,
)
with gr.Row():
new_rank = gr.Slider(
label='Desired LoRA rank',
minimum=1,
maximum=1024,
step=1,
value=4,
interactive=True,
)
dynamic_method = gr.Dropdown(
choices=['None', 'sv_ratio', 'sv_fro', 'sv_cumulative'],
value='sv_fro',
label='Dynamic method',
interactive=True,
)
dynamic_param = gr.Textbox(
label='Dynamic parameter',
value='0.9',
interactive=True,
placeholder='Value for the dynamic method selected.',
)
with gr.Row():
verbose = gr.Checkbox(label='Verbose', value=True)
save_precision = gr.Dropdown(
label='Save precision',
choices=['fp16', 'bf16', 'float'],
value='fp16',
interactive=True,
)
device = gr.Dropdown(
label='Device',
choices=[
'cpu',
'cuda',
],
value='cuda',
interactive=True,
)
convert_button = gr.Button('Resize model')
convert_button.click(
resize_lora,
inputs=[
model,
new_rank,
save_to,
save_precision,
device,
dynamic_method,
dynamic_param,
verbose,
],
show_progress=False,
)
|