File size: 5,382 Bytes
2fdce3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import gradio as gr
from easygui import msgbox
import subprocess
import os
from .common_gui import get_saveasfilename_path, get_file_path

from library.custom_logging import setup_logging

# Set up logging
log = setup_logging()

PYTHON = 'python3' if os.name == 'posix' else './venv/Scripts/python.exe'
folder_symbol = '\U0001f4c2'  # πŸ“‚
refresh_symbol = '\U0001f504'  # πŸ”„
save_style_symbol = '\U0001f4be'  # πŸ’Ύ
document_symbol = '\U0001F4C4'   # πŸ“„


def resize_lora(
    model,
    new_rank,
    save_to,
    save_precision,
    device,
    dynamic_method,
    dynamic_param,
    verbose,
):
    # Check for caption_text_input
    if model == '':
        msgbox('Invalid model file')
        return

    # Check if source model exist
    if not os.path.isfile(model):
        msgbox('The provided model is not a file')
        return

    if dynamic_method == 'sv_ratio':
        if float(dynamic_param) < 2:
            msgbox(
                f'Dynamic parameter for {dynamic_method} need to be 2 or greater...'
            )
            return

    if dynamic_method == 'sv_fro' or dynamic_method == 'sv_cumulative':
        if float(dynamic_param) < 0 or float(dynamic_param) > 1:
            msgbox(
                f'Dynamic parameter for {dynamic_method} need to be between 0 and 1...'
            )
            return

    # Check if save_to end with one of the defines extension. If not add .safetensors.
    if not save_to.endswith(('.pt', '.safetensors')):
        save_to += '.safetensors'

    if device == '':
        device = 'cuda'

    run_cmd = f'{PYTHON} "{os.path.join("networks","resize_lora.py")}"'
    run_cmd += f' --save_precision {save_precision}'
    run_cmd += f' --save_to "{save_to}"'
    run_cmd += f' --model "{model}"'
    run_cmd += f' --new_rank {new_rank}'
    run_cmd += f' --device {device}'
    if not dynamic_method == 'None':
        run_cmd += f' --dynamic_method {dynamic_method}'
        run_cmd += f' --dynamic_param {dynamic_param}'
    if verbose:
        run_cmd += f' --verbose'

    log.info(run_cmd)

    # Run the command
    if os.name == 'posix':
        os.system(run_cmd)
    else:
        subprocess.run(run_cmd)

    log.info('Done resizing...')


###
# Gradio UI
###


def gradio_resize_lora_tab(headless=False):
    with gr.Tab('Resize LoRA'):
        gr.Markdown('This utility can resize a LoRA.')

        lora_ext = gr.Textbox(value='*.safetensors *.pt', visible=False)
        lora_ext_name = gr.Textbox(value='LoRA model types', visible=False)

        with gr.Row():
            model = gr.Textbox(
                label='Source LoRA',
                placeholder='Path to the LoRA to resize',
                interactive=True,
            )
            button_lora_a_model_file = gr.Button(
                folder_symbol,
                elem_id='open_folder_small',
                visible=(not headless),
            )
            button_lora_a_model_file.click(
                get_file_path,
                inputs=[model, lora_ext, lora_ext_name],
                outputs=model,
                show_progress=False,
            )
        with gr.Row():
            save_to = gr.Textbox(
                label='Save to',
                placeholder='path for the LoRA file to save...',
                interactive=True,
            )
            button_save_to = gr.Button(
                folder_symbol,
                elem_id='open_folder_small',
                visible=(not headless),
            )
            button_save_to.click(
                get_saveasfilename_path,
                inputs=[save_to, lora_ext, lora_ext_name],
                outputs=save_to,
                show_progress=False,
            )
        with gr.Row():
            new_rank = gr.Slider(
                label='Desired LoRA rank',
                minimum=1,
                maximum=1024,
                step=1,
                value=4,
                interactive=True,
            )
            dynamic_method = gr.Dropdown(
                choices=['None', 'sv_ratio', 'sv_fro', 'sv_cumulative'],
                value='sv_fro',
                label='Dynamic method',
                interactive=True,
            )
            dynamic_param = gr.Textbox(
                label='Dynamic parameter',
                value='0.9',
                interactive=True,
                placeholder='Value for the dynamic method selected.',
            )
        with gr.Row():
            
            verbose = gr.Checkbox(label='Verbose', value=True)
            save_precision = gr.Dropdown(
                label='Save precision',
                choices=['fp16', 'bf16', 'float'],
                value='fp16',
                interactive=True,
            )
            device = gr.Dropdown(
                label='Device',
                choices=[
                    'cpu',
                    'cuda',
                ],
                value='cuda',
                interactive=True,
            )

        convert_button = gr.Button('Resize model')

        convert_button.click(
            resize_lora,
            inputs=[
                model,
                new_rank,
                save_to,
                save_precision,
                device,
                dynamic_method,
                dynamic_param,
                verbose,
            ],
            show_progress=False,
        )