File size: 8,149 Bytes
60bd18f
41b72e9
cb73831
60bd18f
 
41b72e9
f5b5741
 
 
 
 
 
cb73831
f5b5741
 
cb73831
f5b5741
41b72e9
 
 
60bd18f
 
cb73831
60bd18f
42a39d1
60bd18f
fbf0a1f
60bd18f
f5b5741
41b72e9
b49939e
 
 
 
 
 
 
 
 
2312c22
 
e9b27b0
2312c22
 
 
60bd18f
b49939e
 
 
 
 
 
 
 
 
 
 
cb73831
b49939e
cb73831
b49939e
41b72e9
 
cb73831
 
 
 
 
 
 
 
41b72e9
 
f5b5741
 
 
 
41b72e9
f5b5741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb73831
f5b5741
 
 
 
41b72e9
 
 
 
 
60c53f1
41b72e9
 
f5b5741
 
41b72e9
f5b5741
 
 
41b72e9
f5b5741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60bd18f
 
 
 
 
f5b5741
 
 
 
 
 
 
60bd18f
f5b5741
 
60bd18f
f5b5741
 
60bd18f
 
f5b5741
b49939e
 
 
60bd18f
f5b5741
 
b49939e
 
60bd18f
b49939e
60bd18f
b49939e
60bd18f
b49939e
60bd18f
b49939e
60bd18f
f5b5741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60bd18f
 
 
 
 
641bdc2
60bd18f
641bdc2
 
60bd18f
 
 
641bdc2
 
 
 
 
 
60bd18f
 
 
 
 
f5b5741
 
 
cb73831
f5b5741
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import csv
import os
import pickle
import random
import sys
from collections import Counter
from glob import glob

import clip
import gdown
import gradio as gr
import numpy as np
import psutil
import torch
import torchvision
from datasets import load_dataset
from tqdm import tqdm

from SimSearch import FaissCosineNeighbors

csv.field_size_limit(sys.maxsize)

# Download Embeddings
gdown.cached_download(
    url="https://huggingface.co/datasets/taesiri/GTA_V_CLIP_Embeddings/resolve/main/mini-GTA-V-Embeddings.zip",
    path="./GTA-V-Embeddings.zip",
    quiet=False,
    md5="b1228503d5a89eef7e35e2cbf86b2fc0",
)


gdown.cached_download(
    url="https://huggingface.co/datasets/taesiri/GamePhysics_Grand_Theft_Auto_V/resolve/main/GTA-V-Videos.zip?download=true",
    path="./GTA-V-Videos.zip",
    quiet=False,
    md5="14d8374a7d1f09c13b5c99fe4d0dc4f1",
)


# EXTRACT
torchvision.datasets.utils.extract_archive(
    from_path="GTA-V-Embeddings.zip",
    to_path="Embeddings/VIT32/",
    remove_finished=False,
)


# EXTRACT
torchvision.datasets.utils.extract_archive(
    from_path="GTA-V-Videos.zip",
    to_path="./",
    remove_finished=False,
)


list_of_all_videos = glob("GTA-V-Videos/*.mp4")

post_id_to_video_path = {
    os.path.splitext(os.path.basename(x))[0]: x for x in list_of_all_videos
}

clip.available_models()


# Log runtime environment info
def log_runtime_information():
    print(f"CPU Count: {psutil.cpu_count()}")
    print(f"Virtual Memory: {psutil.virtual_memory()}")
    print(f"Swap Memory: {psutil.swap_memory()}")


# # Searcher
class GamePhysicsSearcher:
    def __init__(self, CLIP_MODEL, GAME_NAME, EMBEDDING_PATH="./Embeddings/VIT32/"):
        self.CLIP_MODEL = CLIP_MODEL
        self.GAME_NAME = GAME_NAME
        self.simsearcher = FaissCosineNeighbors()

        self.all_embeddings = glob(f"{EMBEDDING_PATH}{self.GAME_NAME}/*.npy")

        self.filenames = [os.path.basename(x) for x in self.all_embeddings]
        self.file_to_class_id = {x: i for i, x in enumerate(self.filenames)}
        self.class_id_to_file = {i: x for i, x in enumerate(self.filenames)}
        self.build_index()

    def read_features(self, file_path):
        with open(file_path, "rb") as f:
            video_features = pickle.load(f)
        return video_features

    def read_all_features(self):
        features = {}
        filenames_extended = []

        X_train = []
        y_train = []

        for i, vfile in enumerate(tqdm(self.all_embeddings)):
            vfeatures = self.read_features(vfile)
            features[vfile.split("/")[-1]] = vfeatures
            X_train.extend(vfeatures)
            y_train.extend([i] * vfeatures.shape[0])
            filenames_extended.extend(vfeatures.shape[0] * [vfile.split("/")[-1]])

        X_train = np.asarray(X_train)
        y_train = np.asarray(y_train)

        return X_train, y_train

    def build_index(self):
        X_train, y_train = self.read_all_features()
        self.simsearcher.fit(X_train, y_train)

    def text_to_vector(self, query):
        text_tokens = clip.tokenize(query)
        with torch.no_grad():
            text_features = self.CLIP_MODEL.encode_text(text_tokens).float()
        text_features /= text_features.norm(dim=-1, keepdim=True)
        return text_features

    # Source: https://stackoverflow.com/a/480227
    def f7(self, seq):
        seen = set()
        seen_add = seen.add  # This is for performance improvement, don't remove
        return [x for x in seq if not (x in seen or seen_add(x))]

    def search_top_k(self, q, k=5, pool_size=1000, search_mod="Majority"):
        q = self.text_to_vector(q)
        nearest_data_points = self.simsearcher.get_nearest_labels(q, pool_size)

        if search_mod == "Majority":
            topKs = [x[0] for x in Counter(nearest_data_points[0]).most_common(k)]
        elif search_mod == "Top-K":
            topKs = list(self.f7(nearest_data_points[0]))[:k]

        video_filename = [
            post_id_to_video_path[self.class_id_to_file[x].replace(".npy", "")]
            for x in topKs
        ]

        return video_filename


################ SEARCH CORE ################
# CRAETE CLIP MODEL
vit_model, vit_preprocess = clip.load("ViT-B/32")
vit_model.eval()

saved_searchers = {}


def gradio_search(query, game_name, selected_model, aggregator, pool_size, k=6):
    # print(query, game_name, selected_model, aggregator, pool_size)
    if f"{game_name}_{selected_model}" in saved_searchers.keys():
        searcher = saved_searchers[f"{game_name}_{selected_model}"]
    else:
        if selected_model == "ViT-B/32":
            model = vit_model
            searcher = GamePhysicsSearcher(CLIP_MODEL=model, GAME_NAME=game_name)
        else:
            raise

        saved_searchers[f"{game_name}_{selected_model}"] = searcher

    results = []
    relevant_videos = searcher.search_top_k(
        query, k=k, pool_size=pool_size, search_mod=aggregator
    )

    params = ", ".join(
        map(str, [query, game_name, selected_model, aggregator, pool_size])
    )
    results.append(params)

    for v in relevant_videos:
        results.append(v)
        sid = v.split("/")[-1].split(".")[0]
        results.append(
            f'<a href="https://www.reddit.com/r/GamePhysics/comments/{sid}/" target="_blank">Link to the post</a>'
        )

    print(f"found {len(results)} results")
    return results


def main():
    list_of_games = ["Grand Theft Auto V"]

    # GRADIO APP
    main = gr.Interface(
        fn=gradio_search,
        inputs=[
            gr.Textbox(
                lines=1,
                placeholder="Search Query",
                value="A person flying in the air",
                label="Query",
            ),
            gr.Radio(list_of_games, label="Game To Search", value=list_of_games[0]),
            gr.Radio(["ViT-B/32"], label="Model", value="ViT-B/32"),
            gr.Radio(["Majority", "Top-K"], label="Aggregator", value="Majority"),
            gr.Slider(300, 2000, label="Pool Size", value=1000),
        ],
        outputs=[
            gr.Textbox(label="Search Params"),
            gr.Video(label="Result 1"),
            gr.Markdown(),
            gr.Video(label="Result 2"),
            gr.Markdown(),
            gr.Video(label="Result 3"),
            gr.Markdown(),
            gr.Video(label="Result 4"),
            gr.Markdown(),
            gr.Video(label="Result 5"),
            gr.Markdown(),
        ],
        examples=[
            ["A red car", list_of_games[0], "ViT-B/32", "Top-K", 1000],
            ["A person wearing pink", list_of_games[0], "ViT-B/32", "Top-K", 1000],
            ["A car flying in the air", list_of_games[0], "ViT-B/32", "Majority", 1000],
            [
                "A person flying in the air",
                list_of_games[0],
                "ViT-B/32",
                "Majority",
                1000,
            ],
            [
                "A car in vertical position",
                list_of_games[0],
                "ViT-B/32",
                "Majority",
                1000,
            ],
            ["A bike inside a car", list_of_games[0], "ViT-B/32", "Majority", 1000],
            ["A bike on a wall", list_of_games[0], "ViT-B/32", "Majority", 1000],
            ["A car stuck in a rock", list_of_games[0], "ViT-B/32", "Majority", 1000],
            ["A car stuck in a tree", list_of_games[0], "ViT-B/32", "Majority", 1000],
        ],
    )

    blocks = gr.Blocks()
    with blocks:
        gr.Markdown(
            """
        # CLIP + GamePhysics - Searching dataset of Gameplay bugs
        
        This demo shows how to use the CLIP model to search for gameplay bugs in a video game.
        
        Enter your query and select the game you want to search for.
        """
        )

        gr.Markdown(
            """
            [Website](https://asgaardlab.github.io/CLIPxGamePhysics/) - [Paper](https://arxiv.org/abs/2203.11096)
            """
        )

        gr.TabbedInterface([main], ["GTA V Demo"])

    blocks.launch(
        debug=True,
    )


if __name__ == "__main__":
    log_runtime_information()
    main()