Spaces:
Runtime error
Runtime error
File size: 8,538 Bytes
2918df9 597bf7d 2918df9 597bf7d fb9cb6e 597bf7d 554bac5 597bf7d 554bac5 597bf7d 554bac5 597bf7d e18be25 597bf7d 554bac5 597bf7d 554bac5 597bf7d 554bac5 597bf7d 554bac5 597bf7d 554bac5 597bf7d 554bac5 597bf7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
from pathlib import Path
import matplotlib as matplotlib
import matplotlib.cm as cm
import pandas as pd
import streamlit as st
import tokenizers
import torch
import torch.nn.functional as F
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode
PROJ = Path(__file__).parent
tokenizer_hash_funcs = {
tokenizers.Tokenizer: lambda _: None,
tokenizers.AddedToken: lambda _: None,
}
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu" if torch.has_mps else "cpu")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
classmap = {
"O": "O",
"PER": "π",
"person": "π",
"LOC": "π",
"location": "π",
"ORG": "π€",
"corporation": "π€",
"product": "π±",
"creative": "π·",
"MISC": "π·",
}
def aggrid_interactive_table(df: pd.DataFrame) -> dict:
"""Creates an st-aggrid interactive table based on a dataframe.
Args:
df (pd.DataFrame]): Source dataframe
Returns:
dict: The selected row
"""
options = GridOptionsBuilder.from_dataframe(
df, enableRowGroup=True, enableValue=True, enablePivot=True
)
options.configure_side_bar()
# options.configure_default_column(cellRenderer=JsCode('''function(params) {return '<a href="#samples-loss">'+params.value+'</a>'}'''))
options.configure_selection("single")
selection = AgGrid(
df,
enable_enterprise_modules=True,
gridOptions=options.build(),
theme="light",
update_mode=GridUpdateMode.NO_UPDATE,
allow_unsafe_jscode=True,
)
return selection
def explode_df(df: pd.DataFrame) -> pd.DataFrame:
"""Takes a dataframe and explodes all the fields."""
df_tokens = df.apply(pd.Series.explode)
if "losses" in df.columns:
df_tokens["losses"] = df_tokens["losses"].astype(float)
return df_tokens # type: ignore
def align_sample(row: pd.Series):
"""Uses word_ids to align all lists in a sample."""
columns = row.axes[0].to_list()
indices = [i for i, id in enumerate(row.word_ids) if id >= 0 and id != row.word_ids[i - 1]]
out = {}
tokens = []
for i, tok in enumerate(row.tokens):
if row.word_ids[i] == -1:
continue
if row.word_ids[i] != row.word_ids[i - 1]:
tokens.append(tok.lstrip("β").lstrip("##").rstrip("@@"))
else:
tokens[-1] += tok.lstrip("β").lstrip("##").rstrip("@@")
out["tokens"] = tokens
if "preds" in columns:
out["preds"] = [row.preds[i] for i in indices]
if "labels" in columns:
out["labels"] = [row.labels[i] for i in indices]
if "losses" in columns:
out["losses"] = [row.losses[i] for i in indices]
if "probs" in columns:
out["probs"] = [row.probs[i] for i in indices]
if "hidden_states" in columns:
out["hidden_states"] = [row.hidden_states[i] for i in indices]
if "ids" in columns:
out["ids"] = row.ids
assert len(tokens) == len(out["preds"]), (tokens, row.tokens)
return out
@st.cache(
allow_output_mutation=True,
hash_funcs=tokenizer_hash_funcs,
)
def tag_text(text: str, tokenizer, model, device: torch.device) -> pd.DataFrame:
"""Tags a given text and creates an (exploded) DataFrame with the predicted labels and probabilities.
Args:
text (str): The text to be processed
tokenizer: Tokenizer to use
model (_type_): Model to use
device (torch.device): The device we want pytorch to use for its calcultaions.
Returns:
pd.DataFrame: A data frame holding the tagged text.
"""
tokens = tokenizer(text).tokens()
tokenized = tokenizer(text, return_tensors="pt")
word_ids = [w if w is not None else -1 for w in tokenized.word_ids()]
input_ids = tokenized.input_ids.to(device)
outputs = model(input_ids, output_hidden_states=True)
preds = torch.argmax(outputs.logits, dim=2)
preds = [model.config.id2label[p] for p in preds[0].cpu().numpy()]
hidden_states = outputs.hidden_states[-1][0].detach().cpu().numpy()
# hidden_states = np.mean([hidden_states, outputs.hidden_states[0][0].detach().cpu().numpy()], axis=0)
probs = 1 // (
torch.min(F.softmax(outputs.logits, dim=-1), dim=-1).values[0].detach().cpu().numpy()
)
df = pd.DataFrame(
[[tokens, word_ids, preds, probs, hidden_states]],
columns="tokens word_ids preds probs hidden_states".split(),
)
merged_df = pd.DataFrame(df.apply(align_sample, axis=1).tolist())
return explode_df(merged_df).reset_index().drop(columns=["index"])
def get_bg_color(label: str):
"""Retrieves a label's color from the session state."""
return st.session_state[f"color_{label}"]
def get_fg_color(bg_color_hex: str) -> str:
"""Chooses the proper (foreground) text color (black/white) for a given background color, maximizing contrast.
Adapted from https://gomakethings.com/dynamically-changing-the-text-color-based-on-background-color-contrast-with-vanilla-js/
Args:
bg_color_hex (str): The background color given as a HEX stirng.
Returns:
str: Either "black" or "white".
"""
r = int(bg_color_hex[1:3], 16)
g = int(bg_color_hex[3:5], 16)
b = int(bg_color_hex[5:7], 16)
yiq = ((r * 299) + (g * 587) + (b * 114)) / 1000
return "black" if (yiq >= 128) else "white"
def colorize_classes(df: pd.DataFrame) -> pd.DataFrame:
"""Colorizes the errors in the dataframe."""
def colorize_row(row):
return [
"background-color: "
+ ("white" if (row["labels"] == "IGN" or (row["preds"] == row["labels"])) else "pink")
+ ";"
] * len(row)
def colorize_col(col):
if col.name == "labels" or col.name == "preds":
bgs = []
fgs = []
for v in col.values:
bgs.append(get_bg_color(v.split("-")[1]) if "-" in v else "#ffffff")
fgs.append(get_fg_color(bgs[-1]))
return [f"background-color: {bg}; color: {fg};" for bg, fg in zip(bgs, fgs)]
return [""] * len(col)
df = df.reset_index().drop(columns=["index"]).T
return df # .style.apply(colorize_col, axis=0)
def htmlify_labeled_example(example: pd.DataFrame) -> str:
"""Builds an HTML (string) representation of a single example.
Args:
example (pd.DataFrame): The example to process.
Returns:
str: An HTML string representation of a single example.
"""
html = []
for _, row in example.iterrows():
pred = row.preds.split("-")[1] if "-" in row.preds else "O"
label = row.labels
label_class = row.labels.split("-")[1] if "-" in row.labels else "O"
color = get_bg_color(row.preds.split("-")[1]) if "-" in row.preds else "#000000"
true_color = get_bg_color(row.labels.split("-")[1]) if "-" in row.labels else "#000000"
font_color = get_fg_color(color) if color else "white"
true_font_color = get_fg_color(true_color) if true_color else "white"
is_correct = row.preds == row.labels
loss_html = (
""
if float(row.losses) < 0.01
else f"<span style='background-color: yellow; color: font_color; padding: 0 5px;'>{row.losses:.3f}</span>"
)
loss_html = ""
if row.labels == row.preds == "O":
html.append(f"<span>{row.tokens}</span>")
elif row.labels == "IGN":
assert False
else:
opacity = "1" if not is_correct else "0.5"
correct = (
""
if is_correct
else f"<span title='{label}' style='background-color: {true_color}; opacity: 1; color: {true_font_color}; padding: 0 5px; border: 1px solid black; min-width: 30px'>{classmap[label_class]}</span>"
)
pred_icon = classmap[pred] if pred != "O" and row.preds[:2] != "I-" else ""
html.append(
f"<span style='border: 1px solid black; color: {color}; padding: 0 5px;' title={row.preds}>{pred_icon + ' '}{row.tokens}</span>{correct}{loss_html}"
)
return " ".join(html)
def color_map_color(value: float, cmap_name="Set1", vmin=0, vmax=1) -> str:
"""Turns a value into a color using a color map."""
norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax)
cmap = cm.get_cmap(cmap_name) # PiYG
rgba = cmap(norm(abs(value)))
color = matplotlib.colors.rgb2hex(rgba[:3])
return color
|