File size: 16,522 Bytes
e3807d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

import spaces

import sys
import os
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'amt/src')))

import subprocess
from typing import Tuple, Dict, Literal
from ctypes import ArgumentError

from html_helper import *
from model_helper import *

import torchaudio
import glob
import gradio as gr
from gradio_log import Log
from pathlib import Path

# gradio_log
log_file = 'amt/log.txt'
Path(log_file).touch()

# @title Load Checkpoint
model_name = 'YPTF.MoE+Multi (noPS)' # @param ["YMT3+", "YPTF+Single (noPS)", "YPTF+Multi (PS)", "YPTF.MoE+Multi (noPS)", "YPTF.MoE+Multi (PS)"]
precision = '16'# if torch.cuda.is_available() else '32'# @param ["32", "bf16-mixed", "16"]
project = '2024'

if model_name == "YMT3+":
    checkpoint = "notask_all_cross_v6_xk2_amp0811_gm_ext_plus_nops_b72@model.ckpt"
    args = [checkpoint, '-p', project, '-pr', precision]
elif model_name == "YPTF+Single (noPS)":
    checkpoint = "ptf_all_cross_rebal5_mirst_xk2_edr005_attend_c_full_plus_b100@model.ckpt"
    args = [checkpoint, '-p', project, '-enc', 'perceiver-tf', '-ac', 'spec',
            '-hop', '300', '-atc', '1', '-pr', precision]
elif model_name == "YPTF+Multi (PS)":
    checkpoint = "mc13_256_all_cross_v6_xk5_amp0811_edr005_attend_c_full_plus_2psn_nl26_sb_b26r_800k@model.ckpt"
    args = [checkpoint, '-p', project, '-tk', 'mc13_full_plus_256',
            '-dec', 'multi-t5', '-nl', '26', '-enc', 'perceiver-tf',
            '-ac', 'spec', '-hop', '300', '-atc', '1', '-pr', precision]
elif model_name == "YPTF.MoE+Multi (noPS)":
    checkpoint = "mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b36_nops@last.ckpt"
    args = [checkpoint, '-p', project, '-tk', 'mc13_full_plus_256', '-dec', 'multi-t5',
            '-nl', '26', '-enc', 'perceiver-tf', '-sqr', '1', '-ff', 'moe',
            '-wf', '4', '-nmoe', '8', '-kmoe', '2', '-act', 'silu', '-epe', 'rope',
            '-rp', '1', '-ac', 'spec', '-hop', '300', '-atc', '1', '-pr', precision]
elif model_name == "YPTF.MoE+Multi (PS)":
    checkpoint = "mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b80_ps2@model.ckpt"
    args = [checkpoint, '-p', project, '-tk', 'mc13_full_plus_256', '-dec', 'multi-t5',
            '-nl', '26', '-enc', 'perceiver-tf', '-sqr', '1', '-ff', 'moe',
            '-wf', '4', '-nmoe', '8', '-kmoe', '2', '-act', 'silu', '-epe', 'rope',
            '-rp', '1', '-ac', 'spec', '-hop', '300', '-atc', '1', '-pr', precision]
else:
    raise ValueError(model_name)

model = load_model_checkpoint(args=args, device="cpu")
#model.to("cuda")
# Keep model on CPU for HuggingFace Spaces free tier
print("Model loaded on CPU for HuggingFace Spaces deployment")
# @title GradIO helper


def prepare_media(source_path_or_url: os.PathLike,
                  source_type: Literal['audio_filepath', 'youtube_url'],
                  delete_video: bool = True,
                  simulate = False) -> Dict:
    """prepare media from source path or youtube, and return audio info"""
    # Get audio_file
    if source_type == 'audio_filepath':
        audio_file = source_path_or_url
    elif source_type == 'youtube_url':
        if os.path.exists('/download/yt_audio.mp3'):
            os.remove('/download/yt_audio.mp3')
        # Download from youtube
        with open(log_file, 'w') as lf:
            audio_file = './downloaded/yt_audio'
            command = ['yt-dlp', '-x', source_path_or_url, '-f', 'bestaudio',
                '-o', audio_file, '--audio-format', 'mp3', '--restrict-filenames',
                '--extractor-retries', '10',
                '--force-overwrites', '--username', 'oauth2', '--password', '', '-v']
            if simulate:
                command = command + ['-s']
            process = subprocess.Popen(command,
                stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
        
            for line in iter(process.stdout.readline, ''):
                # Filter out unnecessary messages
                print(line)
                if "www.google.com/device" in line:
                    hl_text = line.replace("https://www.google.com/device", "\033[93mhttps://www.google.com/device\x1b[0m").split()
                    hl_text[-1] = "\x1b[31;1m" + hl_text[-1] + "\x1b[0m"
                    lf.write(' '.join(hl_text)); lf.flush()
                elif "Authorization successful" in line or "Video unavailable" in line:
                    lf.write(line); lf.flush()
            process.stdout.close()
            process.wait()
        
        audio_file += '.mp3'
    else:
        raise ValueError(source_type)

    # Create info
    info = torchaudio.info(audio_file)
    return {
        "filepath": audio_file,
        "track_name": os.path.basename(audio_file).split('.')[0],
        "sample_rate": int(info.sample_rate),
        "bits_per_sample": int(info.bits_per_sample),
        "num_channels": int(info.num_channels),
        "num_frames": int(info.num_frames),
        "duration": int(info.num_frames / info.sample_rate),
        "encoding": str.lower(info.encoding),
        }

@spaces.GPU(duration=120)  # 2 minute timeout for CPU inference
def process_audio(audio_filepath, instrument_hint=None):
    if audio_filepath is None:
        return None
    try:
        print(f"Processing audio: {audio_filepath}")
        if instrument_hint and instrument_hint != "Auto (detect all instruments)":
            print(f"Using instrument hint: {instrument_hint}")
        
        audio_info = prepare_media(audio_filepath, source_type='audio_filepath')
        midifile = transcribe(model, audio_info, instrument_hint)
        midifile = to_data_url(midifile)
        return create_html_from_midi(midifile) # html midiplayer
    except Exception as e:
        print(f"Error in process_audio: {e}")
        import traceback
        traceback.print_exc()
        return f"<p style='color: red;'>Error processing audio: {str(e)}</p>"

# @spaces.GPU  # Comment out for Colab
def process_audio_yt_temp(youtube_url):
    if youtube_url is None:
        return None
    elif youtube_url == "https://youtu.be/5vJBhdjvVcE?si=s3NFG_SlVju0Iklg":
        midifile = "./mid/Free Jazz Intro Music - Piano Sway (Intro B - 10 seconds) - OurMusicBox.mid"
    elif youtube_url == "https://youtu.be/mw5VIEIvuMI?si=Dp9UFVw00Tl8CXe2":
        midifile = "./mid/Naomi Scott   Speechless from Aladdin Official Video Sony vevo Music.mid"
    elif youtube_url == "https://youtu.be/OXXRoa1U6xU?si=dpYMun4LjZHNydSb":
        midifile = "./mid/Mozart_Sonata_for_Piano_and_Violin_(getmp3.pro).mid"
    midifile = to_data_url(midifile)
    return create_html_from_midi(midifile) # html midiplayer


@spaces.GPU(duration=120)
def process_video(youtube_url, instrument_hint=None):
    if 'youtu' not in youtube_url:
        return None
    audio_info = prepare_media(youtube_url, source_type='youtube_url')
    midifile = transcribe(model, audio_info, instrument_hint)
    midifile = to_data_url(midifile)
    return create_html_from_midi(midifile) # html midiplayer

def play_video(youtube_url):
    if 'youtu' not in youtube_url:
        return None
    return create_html_youtube_player(youtube_url)

# def oauth_google():
#     return create_html_oauth()

AUDIO_EXAMPLES = glob.glob('examples/*.*', recursive=True)
YOUTUBE_EXAMPLES = ["https://youtu.be/5vJBhdjvVcE?si=s3NFG_SlVju0Iklg",
                    "https://youtu.be/mw5VIEIvuMI?si=Dp9UFVw00Tl8CXe2",
                    "https://youtu.be/OXXRoa1U6xU?si=dpYMun4LjZHNydSb"]
# YOUTUBE_EXAMPLES = ["https://youtu.be/5vJBhdjvVcE?si=s3NFG_SlVju0Iklg",
#                     "https://www.youtube.com/watch?v=vMboypSkj3c",
#                     "https://youtu.be/vRd5KEjX8vw?si=b-qw633ZjaX6Uxy5",
#                     "https://youtu.be/bnS-HK_lTHA?si=PQLVAab3QHMbv0S3https://youtu.be/zJB0nnOc7bM?si=EA1DN8nHWJcpQWp_",
#                     "https://youtu.be/7mjQooXt28o?si=qqmMxCxwqBlLPDI2",
#                     "https://youtu.be/mIWYTg55h10?si=WkbtKfL6NlNquvT8"]

theme = gr.Theme.from_hub("gradio/dracula_revamped")
theme.text_md = '10px'
theme.text_lg = '12px'

theme.body_background_fill_dark = '#060a1c' #'#372037'# '#a17ba5' #'#73d3ac'
theme.border_color_primary_dark = '#45507328'
theme.block_background_fill_dark = '#3845685c'

theme.body_text_color_dark = 'white'
theme.block_title_text_color_dark = 'black'
theme.body_text_color_subdued_dark = '#e4e9e9'

css = """
.gradio-container {
    background: linear-gradient(-45deg, #ee7752, #e73c7e, #23a6d5, #23d5ab);
    background-size: 400% 400%;
    animation: gradient 15s ease infinite;
    height: 100vh;
}
@keyframes gradient {
    0% {background-position: 0% 50%;}
    50% {background-position: 100% 50%;}
    100% {background-position: 0% 50%;}
}
#mylog {font-size: 12pt; line-height: 1.2; min-height: 2em; max-height: 4em;}  
"""

with gr.Blocks(theme=theme, css=css) as demo:

    with gr.Row():
        with gr.Column(scale=10):
            gr.Markdown(
            f"""
            ## 🎶YourMT3+: Multi-instrument Music Transcription with Enhanced Transformer Architectures and Cross-dataset Stem Augmentation
            - Model name: `{model_name}`
                <details>
                <summary>▶model details◀</summary>
                     
                | **Component**            | **Details**                                      |
                |--------------------------|--------------------------------------------------|
                | Encoder backbone         | Perceiver-TF + Mixture of Experts (2/8)          |
                | Decoder backbone         | Multi-channel T5-small                           |
                | Tokenizer                | MT3 tokens with Singing extension                |
                | Dataset                  | YourMT3 dataset                                  |
                | Augmentation strategy    | Intra-/Cross dataset stem augment, No Pitch-shifting |
                | FP Precision             | BF16-mixed for training, FP16 for inference      |
                </details>
            
            ## Caution:
            - For acadmic reproduction purpose, we strongly recommend to use [Colab Demo](https://colab.research.google.com/drive/1AgOVEBfZknDkjmSRA7leoa81a2vrnhBG?usp=sharing) with multiple checkpoints.

            ## YouTube transcription (Sorry!! YouTube blocked HuggingFace IP. We display a few pre-transcribed examples in the below!):
            - Select one from the `Examples`, click `Get Audio from YouTube`, and then press `Transcribe`.
            
            <div style="display: inline-block;">
                <a href="https://arxiv.org/abs/2407.04822">
                    <img src="https://img.shields.io/badge/arXiv:2407.04822-B31B1B?logo=arxiv&logoColor=fff&style=plastic" alt="arXiv Badge"/>
                </a>
            </div>
            <div style="display: inline-block;">
                <a href="https://github.com/mimbres/YourMT3">
                    <img src="https://img.shields.io/badge/GitHub-181717?logo=github&logoColor=fff&style=plastic" alt="GitHub Badge"/>
                </a>
            </div>
            <div style="display: inline-block;">
                <a href="https://colab.research.google.com/drive/1AgOVEBfZknDkjmSRA7leoa81a2vrnhBG?usp=sharing">
                    <img src="https://img.shields.io/badge/Google%20Colab-F9AB00?logo=googlecolab&logoColor=fff&style=plastic"/>
                </a>
            </div>
            """)

    with gr.Group():

        with gr.Tab("From YouTube"):
            with gr.Column(scale=4):
                # Input URL
                youtube_url = gr.Textbox(label="YouTube Link URL",
                        placeholder="https://youtu.be/...")
                # Display examples
                gr.Examples(examples=YOUTUBE_EXAMPLES, inputs=youtube_url)
                # Play button
                play_video_button = gr.Button("Get Audio from YouTube", variant="primary")
                # Play youtube
                youtube_player = gr.HTML(render=True)

            with gr.Column(scale=4):
                # Instrument selection for YouTube
                youtube_instrument_selector = gr.Dropdown(
                    choices=["Auto (detect all instruments)", "Vocals/Singing", "Guitar", "Piano", 
                            "Violin", "Drums", "Bass", "Saxophone", "Flute"],
                    value="Auto (detect all instruments)",
                    label="Target Instrument",
                    info="Choose the specific instrument you want to transcribe"
                )
                with gr.Row():
                    # Submit button
                    transcribe_video_button = gr.Button("Transcribe", variant="primary")
                    # Oauth button
                    oauth_button = gr.Button("google.com/device", variant="primary", link="https://www.google.com/device")
                    
            with gr.Column(scale=1):
                # Transcribe
                output_tab2 = gr.HTML(render=True)
                # video_output = gr.Text(label="Video Info")
                
                def process_youtube_with_instrument(url, instrument_choice):
                    # Map UI choices to internal instrument hints  
                    instrument_map = {
                        "Auto (detect all instruments)": None,
                        "Vocals/Singing": "vocals",
                        "Guitar": "guitar",
                        "Piano": "piano", 
                        "Violin": "violin",
                        "Drums": "drums",
                        "Bass": "bass",
                        "Saxophone": "saxophone",
                        "Flute": "flute"
                    }
                    instrument_hint = instrument_map.get(instrument_choice, None)
                    # For now, using the temp function - you can replace with process_video when ready
                    return process_audio_yt_temp(url)  # TODO: Replace with process_video(url, instrument_hint)
                
                transcribe_video_button.click(process_youtube_with_instrument, inputs=[youtube_url, youtube_instrument_selector], outputs=output_tab2)
                # transcribe_video_button.click(process_video, inputs=youtube_url, outputs=output_tab2)
                # Play
                play_video_button.click(play_video, inputs=youtube_url, outputs=youtube_player)
            with gr.Column(scale=1):
                Log(log_file, dark=True, xterm_font_size=12, elem_id='mylog')

        with gr.Tab("Upload audio"):
            # Input
            audio_input = gr.Audio(label="Record Audio", type="filepath",
                                show_share_button=True, show_download_button=True)
            
            # Instrument selection
            instrument_selector = gr.Dropdown(
                choices=["Auto (detect all instruments)", "Vocals/Singing", "Guitar", "Piano", 
                        "Violin", "Drums", "Bass", "Saxophone", "Flute"],
                value="Auto (detect all instruments)",
                label="Target Instrument",
                info="Choose the specific instrument you want to transcribe, or 'Auto' for all instruments"
            )
            
            # Display examples
            gr.Examples(examples=AUDIO_EXAMPLES, inputs=audio_input)
            # Submit button
            transcribe_audio_button = gr.Button("Transcribe", variant="primary")
            # Transcribe
            output_tab1 = gr.HTML()
            
            def process_with_instrument(audio_file, instrument_choice):
                # Map UI choices to internal instrument hints
                instrument_map = {
                    "Auto (detect all instruments)": None,
                    "Vocals/Singing": "vocals",
                    "Guitar": "guitar", 
                    "Piano": "piano",
                    "Violin": "violin",
                    "Drums": "drums",
                    "Bass": "bass",
                    "Saxophone": "saxophone",
                    "Flute": "flute"
                }
                instrument_hint = instrument_map.get(instrument_choice, None)
                print(f"UI choice: {instrument_choice} -> instrument_hint: {instrument_hint}")
                return process_audio(audio_file, instrument_hint)
            
            transcribe_audio_button.click(process_with_instrument, inputs=[audio_input, instrument_selector], outputs=output_tab1)

# Launch for HuggingFace Spaces
demo.launch(debug=True)