File size: 3,361 Bytes
2ed202e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9746cf0
2ed202e
 
 
 
 
 
 
 
 
830642f
990cf29
2ed202e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19682d6
 
 
2ed202e
830642f
2ed202e
 
 
830642f
2ed202e
 
 
 
 
 
 
 
 
 
b767091
2ed202e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import io
import os

# os.system("wget -P cvec/ https://huggingface.co/spaces/innnky/nanami/resolve/main/checkpoint_best_legacy_500.pt")
import gradio as gr
import librosa
import numpy as np
import soundfile
from inference.infer_tool import Svc
import logging

logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('markdown_it').setLevel(logging.WARNING)
logging.getLogger('urllib3').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)

config_path = "configs/config.json"

model = Svc("logs/44k/G_120000.pth", "configs/config_1681617113595.json", cluster_model_path="hubert/kmeans_10000.pt")



def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale):
    if input_audio is None:
        return "You need to upload an audio", None
    sampling_rate, audio = input_audio
    # print(audio.shape,sampling_rate)
    duration = audio.shape[0] / sampling_rate
    if duration > 1000000000000:
        return "请上传小于100s的音频,需要转换长音频请本地进行转换", None
    audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
    if len(audio.shape) > 1:
        audio = librosa.to_mono(audio.transpose(1, 0))
    if sampling_rate != 16000:
        audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
    print(audio.shape)
    out_wav_path = "temp.wav"
    soundfile.write(out_wav_path, audio, 16000, format="wav")
    print( cluster_ratio, auto_f0, noise_scale)
    _audio = model.slice_inference(out_wav_path, sid, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale)
    return "Success", (44100, _audio)


app = gr.Blocks()
with app:
    with gr.Tabs():
        with gr.TabItem("Basic"):
            gr.Markdown(value="""
                风又音理 sovits4.0 在线转换器
                
                模型B站@黑茶茶official提供的数据,相较于个人训练的模型输出效果更好
                
                此demo为被刀哭后所作 时间限制已删除xwx 长音频请下载模型文件、config之后使用原仓库进行推理
                """)
            spks = list(model.spk2id.keys())
            sid = gr.Dropdown(label="音色", choices=spks, value=spks[0])
            vc_input3 = gr.Audio(label="上传音频")
            vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
            cluster_ratio = gr.Number(label="聚类模型混合比例,0-1之间,默认为0不启用聚类,能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0)
            auto_f0 = gr.Checkbox(label="自动f0预测,配合聚类模型f0预测效果更好,会导致变调功能失效(仅限转换语音,歌声不要勾选此项会究极跑调)", value=False)
            slice_db = gr.Number(label="切片阈值", value=-40)
            noise_scale = gr.Number(label="noise_scale 建议不要动,会影响音质,玄学参数", value=0.4)
            vc_submit = gr.Button("转换", variant="primary")
            vc_output1 = gr.Textbox(label="Output Message")
            vc_output2 = gr.Audio(label="Output Audio")
        vc_submit.click(vc_fn, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale], [vc_output1, vc_output2])

    app.launch()