Spaces:
Sleeping
Sleeping
File size: 5,051 Bytes
ee28b57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import torch
import torch.nn as nn
from torch.nn import functional as F
import torch.fft as fft
import numpy as np
import librosa as li
import math
from scipy.signal import get_window
def safe_log(x):
return torch.log(x + 1e-7)
@torch.no_grad()
def mean_std_loudness(dataset):
mean = 0
std = 0
n = 0
for _, _, l in dataset:
n += 1
mean += (l.mean().item() - mean) / n
std += (l.std().item() - std) / n
return mean, std
def multiscale_fft(signal, scales, overlap):
stfts = []
for s in scales:
S = torch.stft(
signal,
s,
int(s * (1 - overlap)),
s,
torch.hann_window(s).to(signal),
True,
normalized=True,
return_complex=True,
).abs()
stfts.append(S)
return stfts
def resample(x, factor: int):
batch, frame, channel = x.shape
x = x.permute(0, 2, 1).reshape(batch * channel, 1, frame)
window = torch.hann_window(
factor * 2,
dtype=x.dtype,
device=x.device,
).reshape(1, 1, -1)
y = torch.zeros(x.shape[0], x.shape[1], factor * x.shape[2]).to(x)
y[..., ::factor] = x
y[..., -1:] = x[..., -1:]
y = torch.nn.functional.pad(y, [factor, factor])
y = torch.nn.functional.conv1d(y, window)[..., :-1]
y = y.reshape(batch, channel, factor * frame).permute(0, 2, 1)
return y
def upsample(signal, factor):
signal = signal.permute(0, 2, 1)
signal = nn.functional.interpolate(signal, size=signal.shape[-1] * factor)
return signal.permute(0, 2, 1)
def remove_above_nyquist(amplitudes, pitch, sampling_rate):
n_harm = amplitudes.shape[-1]
pitches = pitch * torch.arange(1, n_harm + 1).to(pitch)
aa = (pitches < sampling_rate / 2).float() + 1e-4
return amplitudes * aa
def scale_function(x):
return 2 * torch.sigmoid(x) ** (math.log(10)) + 1e-7
def extract_loudness(signal, sampling_rate, block_size, n_fft=2048):
S = li.stft(
signal,
n_fft=n_fft,
hop_length=block_size,
win_length=n_fft,
center=True,
)
S = np.log(abs(S) + 1e-7)
f = li.fft_frequencies(sampling_rate, n_fft)
a_weight = li.A_weighting(f)
S = S + a_weight.reshape(-1, 1)
S = np.mean(S, 0)[..., :-1]
return S
def extract_pitch(signal, sampling_rate, block_size):
length = signal.shape[-1] // block_size
f0 = crepe.predict(
signal,
sampling_rate,
step_size=int(1000 * block_size / sampling_rate),
verbose=1,
center=True,
viterbi=True,
)
f0 = f0[1].reshape(-1)[:-1]
if f0.shape[-1] != length:
f0 = np.interp(
np.linspace(0, 1, length, endpoint=False),
np.linspace(0, 1, f0.shape[-1], endpoint=False),
f0,
)
return f0
def mlp(in_size, hidden_size, n_layers):
channels = [in_size] + (n_layers) * [hidden_size]
net = []
for i in range(n_layers):
net.append(nn.Linear(channels[i], channels[i + 1]))
net.append(nn.LayerNorm(channels[i + 1]))
net.append(nn.LeakyReLU())
return nn.Sequential(*net)
def gru(n_input, hidden_size):
return nn.GRU(n_input * hidden_size, hidden_size, batch_first=True)
def harmonic_synth(pitch, amplitudes, sampling_rate):
n_harmonic = amplitudes.shape[-1]
omega = torch.cumsum(2 * math.pi * pitch / sampling_rate, 1)
omegas = omega * torch.arange(1, n_harmonic + 1).to(omega)
signal = (torch.sin(omegas) * amplitudes).sum(-1, keepdim=True)
return signal
def amp_to_impulse_response(amp, target_size):
amp = torch.stack([amp, torch.zeros_like(amp)], -1)
amp = torch.view_as_complex(amp)
amp = fft.irfft(amp)
filter_size = amp.shape[-1]
amp = torch.roll(amp, filter_size // 2, -1)
win = torch.hann_window(filter_size, dtype=amp.dtype, device=amp.device)
amp = amp * win
amp = nn.functional.pad(amp, (0, int(target_size) - int(filter_size)))
amp = torch.roll(amp, -filter_size // 2, -1)
return amp
def fft_convolve(signal, kernel):
signal = nn.functional.pad(signal, (0, signal.shape[-1]))
kernel = nn.functional.pad(kernel, (kernel.shape[-1], 0))
output = fft.irfft(fft.rfft(signal) * fft.rfft(kernel))
output = output[..., output.shape[-1] // 2:]
return output
def init_kernels(win_len, win_inc, fft_len, win_type=None, invers=False):
if win_type == 'None' or win_type is None:
window = np.ones(win_len)
else:
window = get_window(win_type, win_len, fftbins=True) # **0.5
N = fft_len
fourier_basis = np.fft.rfft(np.eye(N))[:win_len]
real_kernel = np.real(fourier_basis)
imag_kernel = np.imag(fourier_basis)
kernel = np.concatenate([real_kernel, imag_kernel], 1).T
if invers:
kernel = np.linalg.pinv(kernel).T
kernel = kernel * window
kernel = kernel[:, None, :]
return torch.from_numpy(kernel.astype(np.float32)), torch.from_numpy(window[None, :, None].astype(np.float32))
|