File size: 11,586 Bytes
e2d8169
 
 
e01b28a
 
1f75eca
9599ede
e01b28a
 
 
 
 
e2d8169
 
 
 
 
 
 
 
 
76e1bf7
0c589a9
 
 
 
 
 
 
 
 
 
 
e2d8169
 
 
 
35d6f49
c66afde
35d6f49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b3279e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2d8169
 
 
 
 
 
 
 
 
 
 
 
 
 
1b3279e
e2d8169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b3279e
68c58d4
76e1bf7
 
 
 
68c58d4
e2d8169
35d6f49
e2d8169
35d6f49
117c1fa
e2d8169
35d6f49
 
76e1bf7
 
 
68c58d4
e2d8169
 
68c58d4
 
59f41d2
8cdc356
3baee4a
953865c
161f392
953865c
b915ccf
e484e38
161f392
b915ccf
161f392
 
 
b915ccf
388dde5
76e1bf7
3baee4a
 
3065307
3baee4a
 
 
 
 
 
 
 
 
 
76e1bf7
 
3baee4a
76e1bf7
 
 
 
 
 
e2d8169
0b6ccf2
e2d8169
 
 
8e3f0dd
e2d8169
59f41d2
e2d8169
856a341
0b6ccf2
 
 
 
 
 
 
 
 
856a341
0b6ccf2
 
 
 
 
 
 
 
 
 
 
856a341
0b6ccf2
 
e2d8169
 
 
b915ccf
e2d8169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d91454b
e2d8169
d91454b
 
e2d8169
 
76e1bf7
bfacbaa
e2d8169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79b209f
 
e2d8169
 
 
 
 
 
 
876591d
 
 
 
 
 
 
e2d8169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import os
import time
from typing import List, Tuple, Optional
from pytube import YouTube
from moviepy.editor import *
import speech_recognition as sr
# import stanza
import pandas as pd
import numpy as np
import google.generativeai as genai
from tqdm.auto import tqdm
import time

import google.generativeai as genai
import gradio as gr
from PIL import Image

print("google-generativeai:", genai.__version__)

GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")

TITLE = """<h1 align="center">تجربة جزئية إقتراح الآيات من ضياء</h1>"""
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision API 🖇️</h2>"""
DUPLICATE = """
<div style="text-align: center; display: flex; justify-content: center; align-items: center;">
    <a href="https://huggingface.co/spaces/SkalskiP/ChatGemini?duplicate=true">
        <img src="https://bit.ly/3gLdBN6" alt="Duplicate Space" style="margin-right: 10px;">
    </a>
    <span>Duplicate the Space and run securely with your 
        <a href="https://makersuite.google.com/app/apikey">GOOGLE API KEY</a>.
    </span>
</div>
"""


IMAGE_WIDTH = 512


safety_settings = [
    {
        "category": "HARM_CATEGORY_DANGEROUS",
        "threshold": "BLOCK_NONE",
    },
    {
        "category": "HARM_CATEGORY_HARASSMENT",
        "threshold": "BLOCK_NONE",
    },
    {
        "category": "HARM_CATEGORY_HATE_SPEECH",
        "threshold": "BLOCK_NONE",
    },
    {
        "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
        "threshold": "BLOCK_NONE",
    },
    {
        "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
        "threshold": "BLOCK_NONE",
    },]


def extract_text_from(vid_link):
  video_url = vid_link
  yt = YouTube(video_url)
  text = ""
  audio_stream = yt.streams.get_audio_only()
  audio_stream.download(filename='tmp.mp4')
  audio_clip = AudioFileClip('tmp.mp4')
  audio_clip.write_audiofile('tmp.wav')
  r = sr.Recognizer()
  with sr.AudioFile('tmp.wav') as source:
    audio_data = r.record(source)
    try:
        text = r.recognize_google(audio_data,  language='ar')
    except sr.UnknownValueError:
        print("Google Speech Recognition could not understand audio")
    except sr.RequestError as e:
        print("Could not request results from Google Speech Recognition service; {0}".format(e))
    return text
      

def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
    if not stop_sequences:
        return None
    return [sequence.strip() for sequence in stop_sequences.split(",")]


def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
    image_height = int(image.height * IMAGE_WIDTH / image.width)
    return image.resize((IMAGE_WIDTH, image_height))


def user(text_prompt: str, chatbot: List[Tuple[str, str]]):
    return "", chatbot + [[text_prompt, None]]
#https://www.youtube.com/watch?v=5Abk7EU5EJI

def bot(
    google_key: str,
    image_prompt: Optional[Image.Image],
    temperature: float,
    max_output_tokens: int,
    stop_sequences: str,
    top_k: int,
    top_p: float,
    chatbot: List[Tuple[str, str]]
):
    google_key = google_key if google_key else GOOGLE_API_KEY
    if not google_key:
        raise ValueError(
            "GOOGLE_API_KEY is not set. "
            "Please follow the instructions in the README to set it up.")

    #text_prompt = chatbot[-1][0]
    txt_in = chatbot[-1][0]
    # if "youtube" in txt_in:
    #     text_prompt = extract_text_from(txt_in)
    # else:
    #     text_prompt = txt_in

    genai.configure(api_key=google_key)

    generation_config = genai.types.GenerationConfig(
        temperature=0.7,
        max_output_tokens=2048,
        stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences),
        top_k=40,
        top_p=0.95)
    
    if "youtube" in txt_in:
        text_prompt = extract_text_from(txt_in)
        prompt= "استخرج كلمات مفتاحية من النص التالي: "+text_prompt
        model = genai.GenerativeModel('gemini-pro')
        response = model.generate_content(
            prompt,
            stream=True,
            generation_config=generation_config,safety_settings=safety_settings)
        response.resolve()
        time.sleep(0.1)

        out1 = response.text
        
        model2 = genai.GenerativeModel('gemini-pro')

        prompt = "أذكر لي آية من القران الكريم تتحدث عن أحد هذه المواضيع او اكثر: "+ out1 + " واشرح الآيه وفسرها باللغة العربية."
        response2 = model2.generate_content(
            prompt,
            stream=True,
            generation_config=generation_config, safety_settings=safety_settings)
        response2.resolve()
        
    elif image_prompt is None:
        model = genai.GenerativeModel('gemini-pro')

        prompt= "استخرج كلمات مفتاحية من النص التالي: "+txt_in
        model = genai.GenerativeModel('gemini-pro')
        response = model.generate_content(
            prompt,
            stream=True,
            generation_config=generation_config,safety_settings=safety_settings)
        response.resolve()
        time.sleep(0.1)

        out1 = response.text
        
        model2 = genai.GenerativeModel('gemini-pro')

        prompt = "أذكر لي آية من القران الكريم تتحدث عن أحد هذه المواضيع او اكثر: "+ out1 + " واشرح الآيه وفسرها باللغة العربية."
        response2 = model2.generate_content(
            prompt,
            stream=True,
            generation_config=generation_config, safety_settings=safety_settings)
        response2.resolve()
        
    else:
        prompt= "اكتب لي وصف عن الصورة المرفقة "
        image_prompt = preprocess_image(image_prompt)
        model = genai.GenerativeModel('gemini-pro-vision')
        response = model.generate_content(
            contents=[prompt, image_prompt],
            stream=True,
            generation_config=generation_config, safety_settings=safety_settings)
        response.resolve()
        time.sleep(0.1)
        out1 = response.text
        
        prompt= "استخرج كلمات مفتاحية من النص التالي: "+out1
        model1 = genai.GenerativeModel('gemini-pro')
        response1 = model1.generate_content(
            prompt,
            stream=True,
            generation_config=generation_config,safety_settings=safety_settings)
        response1.resolve()
        time.sleep(0.1)

        out2 = response1.text
        
        model2 = genai.GenerativeModel('gemini-pro')

        prompt = "أذكر لي آية من القران الكريم تتحدث عن أحد هذه المواضيع او اكثر: "+ out2 + " واشرح الآيه وفسرها باللغة العربية."
        response2 = model2.generate_content(
            prompt,
            stream=True,
            generation_config=generation_config, safety_settings=safety_settings)
        response2.resolve()
        time.sleep(0.1)

        

    # streaming effect
    chatbot[-1][1] = ""
    for chunk in response2:
        for i in range(0, len(chunk.text), 10):
            section = chunk.text[i:i + 10]
            chatbot[-1][1] += section
            time.sleep(0.01)
            yield chatbot


google_key_component = gr.Textbox(
    label="GOOGLE API KEY",
    value="",
    type="password",
    placeholder="...",
    info="You have to provide your own GOOGLE_API_KEY for this app to function properly",
    visible=GOOGLE_API_KEY is None
)

image_prompt_component = gr.Image(type="pil", label="Image", scale=1)
chatbot_component = gr.Chatbot(
    label='Diyaa',
    bubble_full_width=False,
    scale=2,
    rtl=True
)
text_prompt_component = gr.Textbox(
    placeholder="مرحبا!",
    label="ادخل رابط يوتيوب لإستخراج الآيات أو نص\موضوع معين"
)
run_button_component = gr.Button()
temperature_component = gr.Slider(
    minimum=0,
    maximum=1.0,
    value=0.4,
    step=0.05,
    label="Temperature",
    info=(
        "Temperature controls the degree of randomness in token selection. Lower "
        "temperatures are good for prompts that expect a true or correct response, "
        "while higher temperatures can lead to more diverse or unexpected results. "
    ))
max_output_tokens_component = gr.Slider(
    minimum=1,
    maximum=2048,
    value=1024,
    step=1,
    label="Token limit",
    info=(
        "Token limit determines the maximum amount of text output from one prompt. A "
        "token is approximately four characters. The default value is 2048."
    ))
stop_sequences_component = gr.Textbox(
    label="Add stop sequence",
    value="",
    type="text",
    placeholder="STOP, END",
    info=(
        "A stop sequence is a series of characters (including spaces) that stops "
        "response generation if the model encounters it. The sequence is not included "
        "as part of the response. You can add up to five stop sequences."
    ))
top_k_component = gr.Slider(
    minimum=1,
    maximum=40,
    value=32,
    step=1,
    label="Top-K",
    info=(
        "Top-k changes how the model selects tokens for output. A top-k of 1 means the "
        "selected token is the most probable among all tokens in the model’s "
        "vocabulary (also called greedy decoding), while a top-k of 3 means that the "
        "next token is selected from among the 3 most probable tokens (using "
        "temperature)."
    ))
top_p_component = gr.Slider(
    minimum=0,
    maximum=1,
    value=1,
    step=0.01,
    label="Top-P",
    info=(
        "Top-p changes how the model selects tokens for output. Tokens are selected "
        "from most probable to least until the sum of their probabilities equals the "
        "top-p value. For example, if tokens A, B, and C have a probability of .3, .2, "
        "and .1 and the top-p value is .5, then the model will select either A or B as "
        "the next token (using temperature). "
    ))

user_inputs = [
    text_prompt_component,
    chatbot_component
]

bot_inputs = [
    google_key_component,
    image_prompt_component,
    temperature_component,
    max_output_tokens_component,
    stop_sequences_component,
    top_k_component,
    top_p_component,
    chatbot_component
]

with gr.Blocks() as demo:
    gr.HTML(TITLE)
    # gr.HTML(SUBTITLE)
    # gr.HTML(DUPLICATE)
    with gr.Column():
        google_key_component.render()
        with gr.Row():
            image_prompt_component.render()
            chatbot_component.render()
        text_prompt_component.render()
        run_button_component.render()
        with gr.Accordion("Parameters", open=False):
            temperature_component.render()
            max_output_tokens_component.render()
            stop_sequences_component.render()
            with gr.Accordion("Advanced", open=False):
                top_k_component.render()
                top_p_component.render()

    run_button_component.click(
        fn=user,
        inputs=user_inputs,
        outputs=[text_prompt_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
    )

    text_prompt_component.submit(
        fn=user,
        inputs=user_inputs,
        outputs=[text_prompt_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
    )

demo.queue(max_size=99).launch(debug=False, show_error=True)