File size: 9,351 Bytes
e2d8169 e01b28a 1f75eca 9599ede e01b28a e2d8169 35d6f49 1b3279e e2d8169 1b3279e e2d8169 1b3279e 68c58d4 be07a11 68c58d4 be07a11 68c58d4 e2d8169 35d6f49 e2d8169 35d6f49 e2d8169 35d6f49 e2d8169 68c58d4 e2d8169 68c58d4 35d6f49 953865c 807324b 953865c 807324b e2d8169 35d6f49 e2d8169 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import os
import time
from typing import List, Tuple, Optional
from pytube import YouTube
from moviepy.editor import *
import speech_recognition as sr
# import stanza
import pandas as pd
import numpy as np
import google.generativeai as genai
from tqdm.auto import tqdm
import time
import google.generativeai as genai
import gradio as gr
from PIL import Image
print("google-generativeai:", genai.__version__)
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
TITLE = """<h1 align="center">Gemini Playground 😎</h1>"""
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision API 🖇️</h2>"""
DUPLICATE = """
<div style="text-align: center; display: flex; justify-content: center; align-items: center;">
<a href="https://huggingface.co/spaces/SkalskiP/ChatGemini?duplicate=true">
<img src="https://bit.ly/3gLdBN6" alt="Duplicate Space" style="margin-right: 10px;">
</a>
<span>Duplicate the Space and run securely with your
<a href="https://makersuite.google.com/app/apikey">GOOGLE API KEY</a>.
</span>
</div>
"""
IMAGE_WIDTH = 512
afety_settings = [
{
"category": "HARM_CATEGORY_DANGEROUS",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE",
},]
def extract_text_from(vid_link):
video_url = vid_link
yt = YouTube(video_url)
text = ""
audio_stream = yt.streams.get_audio_only()
audio_stream.download(filename='tmp.mp4')
audio_clip = AudioFileClip('tmp.mp4')
audio_clip.write_audiofile('tmp.wav')
r = sr.Recognizer()
with sr.AudioFile('tmp.wav') as source:
audio_data = r.record(source)
try:
text = r.recognize_google(audio_data, language='ar')
except sr.UnknownValueError:
print("Google Speech Recognition could not understand audio")
except sr.RequestError as e:
print("Could not request results from Google Speech Recognition service; {0}".format(e))
return text
def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
if not stop_sequences:
return None
return [sequence.strip() for sequence in stop_sequences.split(",")]
def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
image_height = int(image.height * IMAGE_WIDTH / image.width)
return image.resize((IMAGE_WIDTH, image_height))
def user(text_prompt: str, chatbot: List[Tuple[str, str]]):
return "", chatbot + [[text_prompt, None]]
#https://www.youtube.com/watch?v=5Abk7EU5EJI
def bot(
google_key: str,
image_prompt: Optional[Image.Image],
temperature: float,
max_output_tokens: int,
stop_sequences: str,
top_k: int,
top_p: float,
chatbot: List[Tuple[str, str]]
):
google_key = google_key if google_key else GOOGLE_API_KEY
if not google_key:
raise ValueError(
"GOOGLE_API_KEY is not set. "
"Please follow the instructions in the README to set it up.")
#text_prompt = chatbot[-1][0]
txt_in = chatbot[-1][0]
if "youtube" in txt_in:
text_prompt = extract_text_from(txt_in)
else:
text_prompt = txt_in
genai.configure(api_key=google_key)
generation_config = genai.types.GenerationConfig(
temperature=0.7,
max_output_tokens=2048
stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences),
top_k=40,
top_p=0.95)
if image_prompt is None:
prompt= "استخرج كلمات مفتاحية من النص التالي: "+text_prompt
model = genai.GenerativeModel('gemini-pro')
response = model.generate_content(
prompt,
stream=True,
generation_config=generation_config,afety_settings=afety_settings)
response.resolve()
# out1 = response.text
# print(out1)
# prompt = "أذكر لي آية من القران الكريم تتحدث عن أحد هذه المواضيع او اكثر: "+ out1 + " واشرح الآيه وفسرها باللغة العربية."
# response = model.generate_content(
# prompt,
# stream=True,
# generation_config=generation_config, afety_settings=afety_settings)
response.resolve()
else:
image_prompt = preprocess_image(image_prompt)
model = genai.GenerativeModel('gemini-pro-vision')
response = model.generate_content(
contents=[text_prompt, image_prompt],
stream=True,
generation_config=generation_config, afety_settings=afety_settings)
response.resolve()
# streaming effect
chatbot[-1][1] = ""
for chunk in response:
for i in range(0, len(chunk.text), 10):
section = chunk.text[i:i + 10]
chatbot[-1][1] += section
time.sleep(0.01)
yield chatbot
google_key_component = gr.Textbox(
label="GOOGLE API KEY",
value="",
type="password",
placeholder="...",
info="You have to provide your own GOOGLE_API_KEY for this app to function properly",
visible=GOOGLE_API_KEY is None
)
image_prompt_component = gr.Image(type="pil", label="Image", scale=1)
chatbot_component = gr.Chatbot(
label='Gemini',
bubble_full_width=False,
scale=2
)
text_prompt_component = gr.Textbox(
placeholder="Hi there!",
label="Ask me anything and press Enter"
)
run_button_component = gr.Button()
temperature_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.4,
step=0.05,
label="Temperature",
info=(
"Temperature controls the degree of randomness in token selection. Lower "
"temperatures are good for prompts that expect a true or correct response, "
"while higher temperatures can lead to more diverse or unexpected results. "
))
max_output_tokens_component = gr.Slider(
minimum=1,
maximum=2048,
value=1024,
step=1,
label="Token limit",
info=(
"Token limit determines the maximum amount of text output from one prompt. A "
"token is approximately four characters. The default value is 2048."
))
stop_sequences_component = gr.Textbox(
label="Add stop sequence",
value="",
type="text",
placeholder="STOP, END",
info=(
"A stop sequence is a series of characters (including spaces) that stops "
"response generation if the model encounters it. The sequence is not included "
"as part of the response. You can add up to five stop sequences."
))
top_k_component = gr.Slider(
minimum=1,
maximum=40,
value=32,
step=1,
label="Top-K",
info=(
"Top-k changes how the model selects tokens for output. A top-k of 1 means the "
"selected token is the most probable among all tokens in the model’s "
"vocabulary (also called greedy decoding), while a top-k of 3 means that the "
"next token is selected from among the 3 most probable tokens (using "
"temperature)."
))
top_p_component = gr.Slider(
minimum=0,
maximum=1,
value=1,
step=0.01,
label="Top-P",
info=(
"Top-p changes how the model selects tokens for output. Tokens are selected "
"from most probable to least until the sum of their probabilities equals the "
"top-p value. For example, if tokens A, B, and C have a probability of .3, .2, "
"and .1 and the top-p value is .5, then the model will select either A or B as "
"the next token (using temperature). "
))
user_inputs = [
text_prompt_component,
chatbot_component
]
bot_inputs = [
google_key_component,
image_prompt_component,
temperature_component,
max_output_tokens_component,
stop_sequences_component,
top_k_component,
top_p_component,
chatbot_component
]
with gr.Blocks() as demo:
gr.HTML(TITLE)
gr.HTML(SUBTITLE)
gr.HTML(DUPLICATE)
with gr.Column():
google_key_component.render()
with gr.Row():
image_prompt_component.render()
chatbot_component.render()
text_prompt_component.render()
run_button_component.render()
with gr.Accordion("Parameters", open=False):
temperature_component.render()
max_output_tokens_component.render()
stop_sequences_component.render()
with gr.Accordion("Advanced", open=False):
top_k_component.render()
top_p_component.render()
run_button_component.click(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
text_prompt_component.submit(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
demo.queue(max_size=99).launch(debug=False, show_error=True)
|