Spaces:
Sleeping
Sleeping
File size: 6,065 Bytes
8e851a8 dcb538a 8e851a8 dcb538a 8e851a8 62ff382 8e851a8 66b3d7b 8e851a8 64b01d4 3d4b1ac 8e851a8 2481812 1402b62 66b3d7b 8e851a8 c7e2f5d 6d2fbd1 c7e2f5d e2afd26 8e851a8 0ae9e18 8e851a8 e2afd26 8e851a8 649e06f 62ff382 8e851a8 4efca65 e5a63d9 4efca65 48a9237 a9b03c2 0a1cb88 8f56e3c 4efca65 85b5fba 4c88fee 0a1cb88 4c88fee 0a1cb88 4c88fee 734f6c3 85b5fba 99d4997 4efca65 4c88fee 4efca65 48a9237 4efca65 734f6c3 4c88fee d5ae9c0 4c88fee 8f56e3c 4c88fee 4efca65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
try:
import detectron2
except:
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
import cv2
import torch
from matplotlib.pyplot import axis
import gradio as gr
import requests
import numpy as np
from torch import nn
import requests
import torch
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
from detectron2.utils.visualizer import ColorMode
model_path = "https://huggingface.co/asalhi85/Smartathon-Detectron2/resolve/9f4d573340b033e651d4937906f23850f9b6bc57/phase2_detectron_model.pth"
cfg = get_cfg()
cfg.merge_from_file("./faster_rcnn_X_101_32x8d_FPN_3x.yaml")
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 11
cfg.MODEL.WEIGHTS = model_path
my_metadata = MetadataCatalog.get("dbmdz_coco_all")
#my_metadata.thing_classes = ["GRAFFITI", "FADED_SIGNAGE","POTHOLES","GARBAGE","CONSTRUCTION_ROAD","BROKEN_SIGNAGE","BAD_STREETLIGHT","BAD_BILLBOARD","SAND_ON_ROAD","CLUTTER_SIDEWALK","UNKEPT_FACADE"]
my_metadata.thing_classes = ["None", "BAD_BILLBOARD","BROKEN_SIGNAGE","CLUTTER_SIDEWALK","CONSTRUCTION_ROAD","FADED_SIGNAGE","GARBAGE","GRAFFITI","POTHOLES","SAND_ON_ROAD","UNKEPT_FACADE"]
# #smart_dict={'GRAFFITI' : 0.0 , 'FADED_SIGNAGE': 1.0 , 'POTHOLES': 2.0,
# 'GARBAGE' : 3.0 , 'CONSTRUCTION_ROAD': 4.0 , 'BROKEN_SIGNAGE': 5.0,
# 'BAD_STREETLIGHT' : 6.0 , 'BAD_BILLBOARD': 7.0 , 'SAND_ON_ROAD':8.0,
# 'CLUTTER_SIDEWALK' : 9.0 , 'UNKEPT_FACADE': 10.0}
if not torch.cuda.is_available():
cfg.MODEL.DEVICE = "cpu"
def inference(image_url, image, min_score):
if image_url:
r = requests.get(image_url)
if r:
im = np.frombuffer(r.content, dtype="uint8")
im = cv2.imdecode(im, cv2.IMREAD_COLOR)
else:
im = cv2.imread(image)
# Model expect BGR!
#im = image[:,:,::-1]
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = min_score
predictor = DefaultPredictor(cfg)
outputs = predictor(im)
v = Visualizer(im[:,:,::-1], my_metadata, scale=1.2, instance_mode=ColorMode.IMAGE )
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
return out.get_image()
title = "Smartathon Phase2 Demo - Baseer"
description = "This demo introduces an interactive playground for our trained Detectron2 model."
article = '<p>Detectron model is available from our repository <a href="https://github.com/asalhi/Smartathon-Baseer">here</a>.</p>'
# gr.Interface(
# inference,
# [gr.inputs.Textbox(label="Image URL", placeholder=""),
# gr.inputs.Image(type="filepath", image_mode="RGB", source="upload", optional=False, label="Input Image"),
# gr.Slider(minimum=0.0, maximum=1.0, value=0.4, label="Minimum score"),
# ],
# gr.outputs.Image(type="pil", label="Output"),
# #gr.Examples(['./d1.jpeg', './d2.jpeg', './d3.jpeg','./d4.jpeg','./d5.jpeg','./d6.jpeg'], inputs=gr.inputs.Image(type="filepath", image_mode="RGB", source="upload", optional=False, label="Input Image")),
# title=title,
# description=description,
# article=article,
# #examples=[['./d1.jpeg'], ['./d2.jpeg'], ['./d3.jpeg'],['./d4.jpeg'],['./d5.jpeg'],['./d6.jpeg']],
# examples = gr.Examples(['./d1.jpeg', './d2.jpeg', './d3.jpeg','./d4.jpeg','./d5.jpeg','./d6.jpeg'], inputs=gr.inputs.Image(type="filepath", image_mode="RGB", source="upload", optional=False, label="Input Image")),
# cache_examples=False).launch()
# #examples=['./d1.jpeg', './d2.jpeg', './d3.jpeg','./d4.jpeg','./d5.jpeg','./d6.jpeg']
with gr.Blocks(title=title,
css=".gradio-container {background:white;}"
) as demo:
gr.HTML("""<h4 style="font-weight:bold; text-align:center; color:navy;">"Smartathon Phase2 Demo - Baseer"</h4>""")
# #
#gr.HTML("""<h5 style="color:navy;">1- Select an example by clicking a thumbnail below.</h5>""")
gr.HTML("""<h5 style="color:navy;">1- Select an example by clicking a thumbnail below.<br>
2- Or upload an image by clicking on the canvas.<br>
3- Or insert direct url of an image.</h5>""")
with gr.Row():
with gr.Column():
#gr.HTML("""<h5 style="color:navy;">3- Or insert direct url of an image.</h5>""")
input_url = gr.Textbox(label="Image URL", placeholder="")
#gr.HTML("""<h5 style="color:navy;">2- Or upload an image by clicking on the canvas.<br></h5>""")
input_image = gr.Image(type="filepath", image_mode="RGB", source="upload", optional=False, label="Input Image")
gr.HTML("""<h5 style="color:navy;">4- You can use this slider to control boxes min score: </h5>""")
sliderr = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, label="Minimum score")
output_image = gr.Image(type="pil", label="Output")
# gr.Interface(
# inference,
# [gr.inputs.Textbox(label="Image URL", placeholder=""),
# gr.inputs.Image(type="filepath", image_mode="RGB", source="upload", optional=False, label="Input Image"),
# gr.Slider(minimum=0.0, maximum=1.0, value=0.4, label="Minimum score"),
# ],
gr.Examples(['./d1.jpeg', './d2.jpeg', './d3.jpeg','./d4.jpeg','./d5.jpeg','./d6.jpeg'], inputs=input_image)
#gr.HTML("""<br/>""")
gr.HTML("""<h5 style="color:navy;">5- Then, click "Submit" button to predict object instances. It will take about 15-20 seconds (on cpu)</h5>""")
send_btn = gr.Button("Submit")
send_btn.click(fn=inference, inputs=[input_url,input_image,sliderr], outputs=[output_image], api_name="find")
#gr.HTML("""<h5 style="color:navy;">Reference</h5>""")
#gr.HTML("""<ul>""")
gr.HTML("""<h5 style="color:navy;">Detectron model is available from our repository <a href="https://github.com/asalhi/Smartathon-Baseer">here</a>.</h5>""")
#gr.HTML("""</ul>""")
#demo.queue()
demo.launch() # debug=True)
|