File size: 1,406 Bytes
ba2a6fb
9a97fa7
ba2a6fb
2daa6b4
ba2a6fb
 
2daa6b4
ba2a6fb
 
 
 
 
 
2daa6b4
 
ba2a6fb
 
 
9a97fa7
ba2a6fb
 
9a97fa7
ba2a6fb
 
 
 
9a97fa7
ba2a6fb
 
 
 
 
9a97fa7
ba2a6fb
 
 
 
 
2daa6b4
ba2a6fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import streamlit as st
import torch
import librosa
import numpy as np
from transformers import Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
import torchaudio

# Emojis for emotions
EMOTION_EMOJI = {
    "angry": "😠",
    "happy": "😄",
    "sad": "😢",
    "neutral": "😐"
}

# Load processor and model
processor = Wav2Vec2Processor.from_pretrained("ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition")
model = Wav2Vec2ForSequenceClassification.from_pretrained("ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition")

# Title
st.title("🎙️ Voice Emotion Detector with Emoji")

# Upload audio
uploaded_file = st.file_uploader("Upload a WAV file", type=["wav"])
if uploaded_file is not None:
    st.audio(uploaded_file, format="audio/wav")

    # Load and preprocess audio
    speech_array, sampling_rate = torchaudio.load(uploaded_file)
    if sampling_rate != 16000:
        speech_array = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)(speech_array)
    speech = speech_array.squeeze().numpy()

    inputs = processor(speech, sampling_rate=16000, return_tensors="pt", padding=True)
    with torch.no_grad():
        logits = model(**inputs).logits
    predicted_class_id = torch.argmax(logits).item()
    emotion = model.config.id2label[predicted_class_id]

    st.markdown(f"### Emotion Detected: **{emotion}** {EMOTION_EMOJI.get(emotion, '')}")