Spaces:
Runtime error
Runtime error
File size: 1,406 Bytes
ba2a6fb 9a97fa7 ba2a6fb 2daa6b4 ba2a6fb 2daa6b4 ba2a6fb 2daa6b4 ba2a6fb 9a97fa7 ba2a6fb 9a97fa7 ba2a6fb 9a97fa7 ba2a6fb 9a97fa7 ba2a6fb 2daa6b4 ba2a6fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import streamlit as st
import torch
import librosa
import numpy as np
from transformers import Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
import torchaudio
# Emojis for emotions
EMOTION_EMOJI = {
"angry": "😠",
"happy": "😄",
"sad": "😢",
"neutral": "😐"
}
# Load processor and model
processor = Wav2Vec2Processor.from_pretrained("ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition")
model = Wav2Vec2ForSequenceClassification.from_pretrained("ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition")
# Title
st.title("🎙️ Voice Emotion Detector with Emoji")
# Upload audio
uploaded_file = st.file_uploader("Upload a WAV file", type=["wav"])
if uploaded_file is not None:
st.audio(uploaded_file, format="audio/wav")
# Load and preprocess audio
speech_array, sampling_rate = torchaudio.load(uploaded_file)
if sampling_rate != 16000:
speech_array = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)(speech_array)
speech = speech_array.squeeze().numpy()
inputs = processor(speech, sampling_rate=16000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = torch.argmax(logits).item()
emotion = model.config.id2label[predicted_class_id]
st.markdown(f"### Emotion Detected: **{emotion}** {EMOTION_EMOJI.get(emotion, '')}")
|