Spaces:
Running
Running
File size: 2,555 Bytes
7e430ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import os
import sys
from urllib.parse import urlparse
import cv2
import numpy as np
import torch
from torch.hub import download_url_to_file, get_dir
LAMA_MODEL_URL = os.environ.get(
"LAMA_MODEL_URL",
"https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
)
def download_model(url=LAMA_MODEL_URL):
parts = urlparse(url)
hub_dir = get_dir()
model_dir = os.path.join(hub_dir, "checkpoints")
if not os.path.isdir(model_dir):
os.makedirs(os.path.join(model_dir, "hub", "checkpoints"))
filename = os.path.basename(parts.path)
cached_file = os.path.join(model_dir, filename)
if not os.path.exists(cached_file):
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
hash_prefix = None
download_url_to_file(url, cached_file, hash_prefix, progress=True)
return cached_file
def ceil_modulo(x, mod):
if x % mod == 0:
return x
return (x // mod + 1) * mod
def numpy_to_bytes(image_numpy: np.ndarray) -> bytes:
data = cv2.imencode(".jpg", image_numpy)[1]
image_bytes = data.tobytes()
return image_bytes
def load_img(img_bytes, gray: bool = False):
nparr = np.frombuffer(img_bytes, np.uint8)
if gray:
np_img = cv2.imdecode(nparr, cv2.IMREAD_GRAYSCALE)
else:
np_img = cv2.imdecode(nparr, cv2.IMREAD_UNCHANGED)
if len(np_img.shape) == 3 and np_img.shape[2] == 4:
np_img = cv2.cvtColor(np_img, cv2.COLOR_BGRA2RGB)
else:
np_img = cv2.cvtColor(np_img, cv2.COLOR_BGR2RGB)
return np_img
def norm_img(np_img):
if len(np_img.shape) == 2:
np_img = np_img[:, :, np.newaxis]
np_img = np.transpose(np_img, (2, 0, 1))
np_img = np_img.astype("float32") / 255
return np_img
def resize_max_size(
np_img, size_limit: int, interpolation=cv2.INTER_CUBIC
) -> np.ndarray:
# Resize image's longer size to size_limit if longer size larger than size_limit
h, w = np_img.shape[:2]
if max(h, w) > size_limit:
ratio = size_limit / max(h, w)
new_w = int(w * ratio + 0.5)
new_h = int(h * ratio + 0.5)
return cv2.resize(np_img, dsize=(new_w, new_h), interpolation=interpolation)
else:
return np_img
def pad_img_to_modulo(img, mod):
channels, height, width = img.shape
out_height = ceil_modulo(height, mod)
out_width = ceil_modulo(width, mod)
return np.pad(
img,
((0, 0), (0, out_height - height), (0, out_width - width)),
mode="symmetric",
) |