File size: 5,148 Bytes
7315a11
f3830b3
 
 
 
 
 
 
 
 
 
 
 
 
60d0d89
 
f3830b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16595a6
 
f3830b3
 
 
 
322eff5
 
f3830b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c89e0f3
 
f3830b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322eff5
 
 
 
 
 
 
 
f3830b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89594ff
f3830b3
89594ff
80f9b93
 
f3830b3
 
89594ff
 
 
 
 
 
 
 
80f9b93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# !git clone https://github.com/Edresson/Coqui-TTS -b multilingual-torchaudio-SE TTS

import os
import shutil
import gradio as gr

import sys

import string
import time
import argparse
import json

import numpy as np
# import IPython
# from IPython.display import Audio

import torch

from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
try:
  from TTS.utils.audio import AudioProcessor
except:
  from TTS.utils.audio import AudioProcessor


from TTS.tts.models import setup_model
from TTS.config import load_config
from TTS.tts.models.vits import *

from TTS.tts.utils.speakers import SpeakerManager
from pydub import AudioSegment

# from google.colab import files
import librosa

from scipy.io.wavfile import write, read

import subprocess

'''
from google.colab import drive
drive.mount('/content/drive')

src_path = os.path.join(os.path.join(os.path.join(os.path.join(os.getcwd(), 'drive'), 'MyDrive'), 'Colab Notebooks'), 'best_model_latest.pth.tar')
dst_path = os.path.join(os.getcwd(), 'best_model.pth.tar')

shutil.copy(src_path, dst_path)
'''

TTS_PATH = "TTS/"

# add libraries into environment
sys.path.append(TTS_PATH) # set this if TTS is not installed globally

# Paths definition

OUT_PATH = 'out/'

# create output path
os.makedirs(OUT_PATH, exist_ok=True)

# model vars 
MODEL_PATH = 'best_model.pth.tar'
CONFIG_PATH = 'config.json'
TTS_LANGUAGES = "language_ids.json"
TTS_SPEAKERS = "speakers.json"
USE_CUDA = torch.cuda.is_available()

# load the config
C = load_config(CONFIG_PATH)

# load the audio processor
ap = AudioProcessor(**C.audio)

speaker_embedding = None

C.model_args['d_vector_file'] = TTS_SPEAKERS
C.model_args['use_speaker_encoder_as_loss'] = False

model = setup_model(C)
model.language_manager.set_language_ids_from_file(TTS_LANGUAGES)
# print(model.language_manager.num_languages, model.embedded_language_dim)
# print(model.emb_l)
cp = torch.load(MODEL_PATH, map_location=torch.device('cpu'))
# remove speaker encoder
model_weights = cp['model'].copy()
for key in list(model_weights.keys()):
  if "speaker_encoder" in key:
    del model_weights[key]

model.load_state_dict(model_weights)

model.eval()

if USE_CUDA:
    model = model.cuda()

# synthesize voice
use_griffin_lim = False

# Paths definition

CONFIG_SE_PATH = "config_se.json"
CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar"

# Load the Speaker encoder

SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA)

# Define helper function

def compute_spec(ref_file):
  y, sr = librosa.load(ref_file, sr=ap.sample_rate)
  spec = ap.spectrogram(y)
  spec = torch.FloatTensor(spec).unsqueeze(0)
  return spec


def voice_conversion(ta, ra, da):

  target_audio = 'target.wav'
  reference_audio = 'reference.wav'
  driving_audio = 'driving.wav'

  write(target_audio, ta[0], ta[1])
  write(reference_audio, ra[0], ra[1])
  write(driving_audio, da[0], da[1])          

  # !ffmpeg-normalize $target_audio -nt rms -t=-27 -o $target_audio -ar 16000 -f
  # !ffmpeg-normalize $reference_audio -nt rms -t=-27 -o $reference_audio -ar 16000 -f
  # !ffmpeg-normalize $driving_audio -nt rms -t=-27 -o $driving_audio -ar 16000 -f

  files = [target_audio, reference_audio, driving_audio]

  for file in files:
      subprocess.run(["ffmpeg-normalize", file, "-nt", "rms", "-t=-27", "-o", file, "-ar", "16000", "-f"])

  # ta_ = read(target_audio)

  target_emb = SE_speaker_manager.compute_d_vector_from_clip([target_audio])
  target_emb = torch.FloatTensor(target_emb).unsqueeze(0)

  driving_emb = SE_speaker_manager.compute_d_vector_from_clip([reference_audio])
  driving_emb = torch.FloatTensor(driving_emb).unsqueeze(0)

  # Convert the voice

  driving_spec = compute_spec(driving_audio)
  y_lengths = torch.tensor([driving_spec.size(-1)])
  if USE_CUDA:
      ref_wav_voc, _, _ = model.voice_conversion(driving_spec.cuda(), y_lengths.cuda(), driving_emb.cuda(), target_emb.cuda())
      ref_wav_voc = ref_wav_voc.squeeze().cpu().detach().numpy()
  else:
      ref_wav_voc, _, _ = model.voice_conversion(driving_spec, y_lengths, driving_emb, target_emb)
      ref_wav_voc = ref_wav_voc.squeeze().detach().numpy()

  # print("Reference Audio after decoder:")
  # IPython.display.display(Audio(ref_wav_voc, rate=ap.sample_rate))

  return (ap.sample_rate, ref_wav_voc)

c3 = gr.Interface(
    fn=voice_conversion,
    inputs=[gr.Audio(label='Target Speaker - Reference Clip'), gr.Audio(label='Input Speaker - Reference Clip'), gr.Audio(label='Input Speaker - Clip To Convert')],
    outputs=gr.Audio(label='Target Speaker - Converted Clip'),
    examples=[['ntr.wav', 'timcast1.wav', 'timcast1.wav']], 
)

c1_m2 = gr.Interface(
    fn=voice_conversion,
    inputs=[gr.Audio(label='Target Speaker - Reference Clip'), gr.Audio(label='Input Speaker - Reference Clip', source='microphone'), gr.Audio(label='Input Speaker - Clip To Convert', source='microphone')],
    outputs=gr.Audio(label='Target Speaker - Converted Clip')
)

demo = gr.TabbedInterface([c3, c1_m2], ["Pre-Recorded", "Microphone"])

demo.launch(debug='True')