Spaces:
Sleeping
Sleeping
File size: 3,531 Bytes
0b1cdca c96c440 0b1cdca c96c440 0b1cdca bf9e2e1 0b1cdca 2c01309 0b1cdca 2c01309 0b1cdca c96c440 2c01309 0b1cdca c96c440 2c01309 0b1cdca 2c01309 0b1cdca c96c440 0b1cdca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import streamlit as st
import openai
import os
# Function to get the API key from Streamlit secrets
def get_api_key():
try:
return st.secrets["API_KEY"]
except KeyError:
st.error("API_KEY not found in Streamlit secrets. Please add it.")
return None
# Function to interact with the OpenAI API with streaming
def generate_response(messages, model_name, api_key): # Modified to accept 'messages'
try:
client = openai.OpenAI(api_key=api_key) # Instantiate OpenAI client with api_key
stream = client.chat.completions.create(
model=model_name,
messages=messages, # Use the entire conversation history
stream=True,
)
return stream
except openai.APIError as e:
# Log the error for debugging, but don't display it in the UI
print(f"OpenAI API Error with {model_name}: {e}")
return None
except openai.RateLimitError as e:
# Log the error for debugging, but don't display it in the UI
print(f"OpenAI Rate Limit Error with {model_name}: {e}")
return None
except openai.AuthenticationError as e:
# Log the error for debugging, but don't display it in the UI
print(f"OpenAI Authentication Error with {model_name}: {e}")
return None
except Exception as e:
# Log the error for debugging, but don't display it in the UI
print(f"An unexpected error occurred with {model_name}: {e}")
return None
# Main Streamlit app
def main():
st.title("Chatbot with Model Switching and Streaming")
# Initialize conversation history in session state
if "messages" not in st.session_state:
st.session_state.messages = []
# Display previous messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Get user input
prompt = st.chat_input("Say something")
if prompt:
# Add user message to the state
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Define model priority
models = ["o1-preview", "o1-preview-2024-09-12","o1-mini","gpt-4o-mini","gpt-3.5-turbo"] # Add more models as needed
# Get API key
api_key = get_api_key()
if not api_key:
return
full_response = ""
# Prepare messages for OpenAI:
openai_messages = st.session_state.messages
for model in models:
stream = generate_response(openai_messages, model, api_key) # Pass the messages
if stream:
with st.chat_message("assistant"):
message_placeholder = st.empty()
for chunk in stream:
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
full_response += chunk.choices[0].delta.content
message_placeholder.markdown(full_response + "▌")
message_placeholder.markdown(full_response)
print(f"Using {model} for generation")
break # Break after successful response
full_response = "" # Reset for the next model attempt
if full_response:
# Add bot message to state
st.session_state.messages.append({"role": "assistant", "content": full_response})
if __name__ == "__main__":
main() |