Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,516 Bytes
45ee559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import os
import unittest
import numpy as np
import torch
from tests import get_tests_input_path
from TTS.config import load_config
from TTS.encoder.utils.generic_utils import setup_encoder_model
from TTS.encoder.utils.io import save_checkpoint
from TTS.tts.utils.speakers import SpeakerManager
from TTS.utils.audio import AudioProcessor
encoder_config_path = os.path.join(get_tests_input_path(), "test_speaker_encoder_config.json")
encoder_model_path = os.path.join(get_tests_input_path(), "checkpoint_0.pth")
sample_wav_path = os.path.join(get_tests_input_path(), "../data/ljspeech/wavs/LJ001-0001.wav")
sample_wav_path2 = os.path.join(get_tests_input_path(), "../data/ljspeech/wavs/LJ001-0002.wav")
d_vectors_file_path = os.path.join(get_tests_input_path(), "../data/dummy_speakers.json")
d_vectors_file_pth_path = os.path.join(get_tests_input_path(), "../data/dummy_speakers.pth")
class SpeakerManagerTest(unittest.TestCase):
"""Test SpeakerManager for loading embedding files and computing d_vectors from waveforms"""
@staticmethod
def test_speaker_embedding():
# load config
config = load_config(encoder_config_path)
config.audio.resample = True
# create a dummy speaker encoder
model = setup_encoder_model(config)
save_checkpoint(model, None, None, get_tests_input_path(), 0)
# load audio processor and speaker encoder
ap = AudioProcessor(**config.audio)
manager = SpeakerManager(encoder_model_path=encoder_model_path, encoder_config_path=encoder_config_path)
# load a sample audio and compute embedding
waveform = ap.load_wav(sample_wav_path)
mel = ap.melspectrogram(waveform)
d_vector = manager.compute_embeddings(mel)
assert d_vector.shape[1] == 256
# compute d_vector directly from an input file
d_vector = manager.compute_embedding_from_clip(sample_wav_path)
d_vector2 = manager.compute_embedding_from_clip(sample_wav_path)
d_vector = torch.FloatTensor(d_vector)
d_vector2 = torch.FloatTensor(d_vector2)
assert d_vector.shape[0] == 256
assert (d_vector - d_vector2).sum() == 0.0
# compute d_vector from a list of wav files.
d_vector3 = manager.compute_embedding_from_clip([sample_wav_path, sample_wav_path2])
d_vector3 = torch.FloatTensor(d_vector3)
assert d_vector3.shape[0] == 256
assert (d_vector - d_vector3).sum() != 0.0
# remove dummy model
os.remove(encoder_model_path)
def test_dvector_file_processing(self):
manager = SpeakerManager(d_vectors_file_path=d_vectors_file_path)
self.assertEqual(manager.num_speakers, 1)
self.assertEqual(manager.embedding_dim, 256)
manager = SpeakerManager(d_vectors_file_path=d_vectors_file_pth_path)
self.assertEqual(manager.num_speakers, 1)
self.assertEqual(manager.embedding_dim, 256)
d_vector = manager.get_embedding_by_clip(manager.clip_ids[0])
assert len(d_vector) == 256
d_vectors = manager.get_embeddings_by_name(manager.speaker_names[0])
assert len(d_vectors[0]) == 256
d_vector1 = manager.get_mean_embedding(manager.speaker_names[0], num_samples=2, randomize=True)
assert len(d_vector1) == 256
d_vector2 = manager.get_mean_embedding(manager.speaker_names[0], num_samples=2, randomize=False)
assert len(d_vector2) == 256
assert np.sum(np.array(d_vector1) - np.array(d_vector2)) != 0
|