Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,419 Bytes
46a75d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import os
import random
import unittest
from copy import deepcopy
import torch
from tests import get_tests_output_path
from TTS.tts.configs.overflow_config import OverflowConfig
from TTS.tts.layers.overflow.common_layers import Encoder, Outputnet, OverflowUtils
from TTS.tts.layers.overflow.decoder import Decoder
from TTS.tts.layers.overflow.neural_hmm import EmissionModel, NeuralHMM, TransitionModel
from TTS.tts.models.overflow import Overflow
from TTS.tts.utils.helpers import sequence_mask
from TTS.utils.audio import AudioProcessor
# pylint: disable=unused-variable
torch.manual_seed(1)
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
config_global = OverflowConfig(num_chars=24)
ap = AudioProcessor.init_from_config(config_global)
config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")
parameter_path = os.path.join(get_tests_output_path(), "lj_parameters.pt")
torch.save({"mean": -5.5138, "std": 2.0636, "init_transition_prob": 0.3212}, parameter_path)
def _create_inputs(batch_size=8):
max_len_t, max_len_m = random.randint(25, 50), random.randint(50, 80)
input_dummy = torch.randint(0, 24, (batch_size, max_len_t)).long().to(device)
input_lengths = torch.randint(20, max_len_t, (batch_size,)).long().to(device).sort(descending=True)[0]
input_lengths[0] = max_len_t
input_dummy = input_dummy * sequence_mask(input_lengths)
mel_spec = torch.randn(batch_size, max_len_m, config_global.audio["num_mels"]).to(device)
mel_lengths = torch.randint(40, max_len_m, (batch_size,)).long().to(device).sort(descending=True)[0]
mel_lengths[0] = max_len_m
mel_spec = mel_spec * sequence_mask(mel_lengths).unsqueeze(2)
return input_dummy, input_lengths, mel_spec, mel_lengths
def get_model(config=None):
if config is None:
config = config_global
config.mel_statistics_parameter_path = parameter_path
model = Overflow(config)
model = model.to(device)
return model
def reset_all_weights(model):
"""
refs:
- https://discuss.pytorch.org/t/how-to-re-set-alll-parameters-in-a-network/20819/6
- https://stackoverflow.com/questions/63627997/reset-parameters-of-a-neural-network-in-pytorch
- https://pytorch.org/docs/stable/generated/torch.nn.Module.html
"""
@torch.no_grad()
def weight_reset(m):
# - check if the current module has reset_parameters & if it's callabed called it on m
reset_parameters = getattr(m, "reset_parameters", None)
if callable(reset_parameters):
m.reset_parameters()
# Applies fn recursively to every submodule see: https://pytorch.org/docs/stable/generated/torch.nn.Module.html
model.apply(fn=weight_reset)
class TestOverflow(unittest.TestCase):
def test_forward(self):
model = get_model()
input_dummy, input_lengths, mel_spec, mel_lengths = _create_inputs()
outputs = model(input_dummy, input_lengths, mel_spec, mel_lengths)
self.assertEqual(outputs["log_probs"].shape, (input_dummy.shape[0],))
self.assertEqual(model.state_per_phone * max(input_lengths), outputs["alignments"].shape[2])
def test_inference(self):
model = get_model()
input_dummy, input_lengths, mel_spec, mel_lengths = _create_inputs()
output_dict = model.inference(input_dummy)
self.assertEqual(output_dict["model_outputs"].shape[2], config_global.out_channels)
def test_init_from_config(self):
config = deepcopy(config_global)
config.mel_statistics_parameter_path = parameter_path
config.prenet_dim = 256
model = Overflow.init_from_config(config_global)
self.assertEqual(model.prenet_dim, config.prenet_dim)
class TestOverflowEncoder(unittest.TestCase):
@staticmethod
def get_encoder(state_per_phone):
config = deepcopy(config_global)
config.state_per_phone = state_per_phone
config.num_chars = 24
return Encoder(config.num_chars, config.state_per_phone, config.prenet_dim, config.encoder_n_convolutions).to(
device
)
def test_forward_with_state_per_phone_multiplication(self):
for s_p_p in [1, 2, 3]:
input_dummy, input_lengths, _, _ = _create_inputs()
model = self.get_encoder(s_p_p)
x, x_len = model(input_dummy, input_lengths)
self.assertEqual(x.shape[1], input_dummy.shape[1] * s_p_p)
def test_inference_with_state_per_phone_multiplication(self):
for s_p_p in [1, 2, 3]:
input_dummy, input_lengths, _, _ = _create_inputs()
model = self.get_encoder(s_p_p)
x, x_len = model.inference(input_dummy, input_lengths)
self.assertEqual(x.shape[1], input_dummy.shape[1] * s_p_p)
class TestOverflowUtils(unittest.TestCase):
def test_logsumexp(self):
a = torch.randn(10) # random numbers
self.assertTrue(torch.eq(torch.logsumexp(a, dim=0), OverflowUtils.logsumexp(a, dim=0)).all())
a = torch.zeros(10) # all zeros
self.assertTrue(torch.eq(torch.logsumexp(a, dim=0), OverflowUtils.logsumexp(a, dim=0)).all())
a = torch.ones(10) # all ones
self.assertTrue(torch.eq(torch.logsumexp(a, dim=0), OverflowUtils.logsumexp(a, dim=0)).all())
class TestOverflowDecoder(unittest.TestCase):
@staticmethod
def _get_decoder(num_flow_blocks_dec=None, hidden_channels_dec=None, reset_weights=True):
config = deepcopy(config_global)
config.num_flow_blocks_dec = (
num_flow_blocks_dec if num_flow_blocks_dec is not None else config.num_flow_blocks_dec
)
config.hidden_channels_dec = (
hidden_channels_dec if hidden_channels_dec is not None else config.hidden_channels_dec
)
config.dropout_p_dec = 0.0 # turn off dropout to check invertibility
decoder = Decoder(
config.out_channels,
config.hidden_channels_dec,
config.kernel_size_dec,
config.dilation_rate,
config.num_flow_blocks_dec,
config.num_block_layers,
config.dropout_p_dec,
config.num_splits,
config.num_squeeze,
config.sigmoid_scale,
config.c_in_channels,
).to(device)
if reset_weights:
reset_all_weights(decoder)
return decoder
def test_decoder_forward_backward(self):
for num_flow_blocks_dec in [8, None]:
for hidden_channels_dec in [100, None]:
decoder = self._get_decoder(num_flow_blocks_dec, hidden_channels_dec)
_, _, mel_spec, mel_lengths = _create_inputs()
z, z_len, _ = decoder(mel_spec.transpose(1, 2), mel_lengths)
mel_spec_, mel_lengths_, _ = decoder(z, z_len, reverse=True)
mask = sequence_mask(z_len).unsqueeze(1)
mel_spec = mel_spec[:, : z.shape[2], :].transpose(1, 2) * mask
z = z * mask
self.assertTrue(
torch.isclose(mel_spec, mel_spec_, atol=1e-2).all(),
f"num_flow_blocks_dec={num_flow_blocks_dec}, hidden_channels_dec={hidden_channels_dec}",
)
class TestNeuralHMM(unittest.TestCase):
@staticmethod
def _get_neural_hmm(deterministic_transition=None):
config = deepcopy(config_global)
neural_hmm = NeuralHMM(
config.out_channels,
config.ar_order,
config.deterministic_transition if deterministic_transition is None else deterministic_transition,
config.encoder_in_out_features,
config.prenet_type,
config.prenet_dim,
config.prenet_n_layers,
config.prenet_dropout,
config.prenet_dropout_at_inference,
config.memory_rnn_dim,
config.outputnet_size,
config.flat_start_params,
config.std_floor,
).to(device)
return neural_hmm
@staticmethod
def _get_emission_model():
return EmissionModel().to(device)
@staticmethod
def _get_transition_model():
return TransitionModel().to(device)
@staticmethod
def _get_embedded_input():
input_dummy, input_lengths, mel_spec, mel_lengths = _create_inputs()
input_dummy = torch.nn.Embedding(config_global.num_chars, config_global.encoder_in_out_features).to(device)(
input_dummy
)
return input_dummy, input_lengths, mel_spec, mel_lengths
def test_neural_hmm_forward(self):
input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input()
neural_hmm = self._get_neural_hmm()
log_prob, log_alpha_scaled, transition_matrix, means = neural_hmm(
input_dummy, input_lengths, mel_spec.transpose(1, 2), mel_lengths
)
self.assertEqual(log_prob.shape, (input_dummy.shape[0],))
self.assertEqual(log_alpha_scaled.shape, transition_matrix.shape)
def test_mask_lengths(self):
input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input()
neural_hmm = self._get_neural_hmm()
log_prob, log_alpha_scaled, transition_matrix, means = neural_hmm(
input_dummy, input_lengths, mel_spec.transpose(1, 2), mel_lengths
)
log_c = torch.randn(mel_spec.shape[0], mel_spec.shape[1], device=device)
log_c, log_alpha_scaled = neural_hmm._mask_lengths( # pylint: disable=protected-access
mel_lengths, log_c, log_alpha_scaled
)
assertions = []
for i in range(mel_spec.shape[0]):
assertions.append(log_c[i, mel_lengths[i] :].sum() == 0.0)
self.assertTrue(all(assertions), "Incorrect masking")
assertions = []
for i in range(mel_spec.shape[0]):
assertions.append(log_alpha_scaled[i, mel_lengths[i] :, : input_lengths[i]].sum() == 0.0)
self.assertTrue(all(assertions), "Incorrect masking")
def test_process_ar_timestep(self):
model = self._get_neural_hmm()
input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input()
h_post_prenet, c_post_prenet = model._init_lstm_states( # pylint: disable=protected-access
input_dummy.shape[0], config_global.memory_rnn_dim, mel_spec
)
h_post_prenet, c_post_prenet = model._process_ar_timestep( # pylint: disable=protected-access
1,
mel_spec,
h_post_prenet,
c_post_prenet,
)
self.assertEqual(h_post_prenet.shape, (input_dummy.shape[0], config_global.memory_rnn_dim))
self.assertEqual(c_post_prenet.shape, (input_dummy.shape[0], config_global.memory_rnn_dim))
def test_add_go_token(self):
model = self._get_neural_hmm()
input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input()
out = model._add_go_token(mel_spec) # pylint: disable=protected-access
self.assertEqual(out.shape, mel_spec.shape)
self.assertTrue((out[:, 1:] == mel_spec[:, :-1]).all(), "Go token not appended properly")
def test_forward_algorithm_variables(self):
model = self._get_neural_hmm()
input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input()
(
log_c,
log_alpha_scaled,
transition_matrix,
_,
) = model._initialize_forward_algorithm_variables( # pylint: disable=protected-access
mel_spec, input_dummy.shape[1] * config_global.state_per_phone
)
self.assertEqual(log_c.shape, (mel_spec.shape[0], mel_spec.shape[1]))
self.assertEqual(
log_alpha_scaled.shape,
(
mel_spec.shape[0],
mel_spec.shape[1],
input_dummy.shape[1] * config_global.state_per_phone,
),
)
self.assertEqual(
transition_matrix.shape,
(mel_spec.shape[0], mel_spec.shape[1], input_dummy.shape[1] * config_global.state_per_phone),
)
def test_get_absorption_state_scaling_factor(self):
model = self._get_neural_hmm()
input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input()
input_lengths = input_lengths * config_global.state_per_phone
(
log_c,
log_alpha_scaled,
transition_matrix,
_,
) = model._initialize_forward_algorithm_variables( # pylint: disable=protected-access
mel_spec, input_dummy.shape[1] * config_global.state_per_phone
)
log_alpha_scaled = torch.rand_like(log_alpha_scaled).clamp(1e-3)
transition_matrix = torch.randn_like(transition_matrix).sigmoid().log()
sum_final_log_c = model.get_absorption_state_scaling_factor(
mel_lengths, log_alpha_scaled, input_lengths, transition_matrix
)
text_mask = ~sequence_mask(input_lengths)
transition_prob_mask = ~model.get_mask_for_last_item(input_lengths, device=input_lengths.device)
outputs = []
for i in range(input_dummy.shape[0]):
last_log_alpha_scaled = log_alpha_scaled[i, mel_lengths[i] - 1].masked_fill(text_mask[i], -float("inf"))
log_last_transition_probability = OverflowUtils.log_clamped(
torch.sigmoid(transition_matrix[i, mel_lengths[i] - 1])
).masked_fill(transition_prob_mask[i], -float("inf"))
outputs.append(last_log_alpha_scaled + log_last_transition_probability)
sum_final_log_c_computed = torch.logsumexp(torch.stack(outputs), dim=1)
self.assertTrue(torch.isclose(sum_final_log_c_computed, sum_final_log_c).all())
def test_inference(self):
model = self._get_neural_hmm()
input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input()
for temp in [0.334, 0.667, 1.0]:
outputs = model.inference(
input_dummy, input_lengths, temp, config_global.max_sampling_time, config_global.duration_threshold
)
self.assertEqual(outputs["hmm_outputs"].shape[-1], outputs["input_parameters"][0][0][0].shape[-1])
self.assertEqual(
outputs["output_parameters"][0][0][0].shape[-1], outputs["input_parameters"][0][0][0].shape[-1]
)
self.assertEqual(len(outputs["alignments"]), input_dummy.shape[0])
def test_emission_model(self):
model = self._get_emission_model()
input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input()
x_t = torch.randn(input_dummy.shape[0], config_global.out_channels).to(device)
means = torch.randn(input_dummy.shape[0], input_dummy.shape[1], config_global.out_channels).to(device)
std = torch.rand_like(means).to(device).clamp_(1e-3) # std should be positive
out = model(x_t, means, std, input_lengths)
self.assertEqual(out.shape, (input_dummy.shape[0], input_dummy.shape[1]))
# testing sampling
for temp in [0, 0.334, 0.667]:
out = model.sample(means, std, 0)
self.assertEqual(out.shape, means.shape)
if temp == 0:
self.assertTrue(torch.isclose(out, means).all())
def test_transition_model(self):
model = self._get_transition_model()
input_dummy, input_lengths, mel_spec, mel_lengths = self._get_embedded_input()
prev_t_log_scaled_alph = torch.randn(input_dummy.shape[0], input_lengths.max()).to(device)
transition_vector = torch.randn(input_lengths.max()).to(device)
out = model(prev_t_log_scaled_alph, transition_vector, input_lengths)
self.assertEqual(out.shape, (input_dummy.shape[0], input_lengths.max()))
class TestOverflowOutputNet(unittest.TestCase):
@staticmethod
def _get_outputnet():
config = deepcopy(config_global)
outputnet = Outputnet(
config.encoder_in_out_features,
config.memory_rnn_dim,
config.out_channels,
config.outputnet_size,
config.flat_start_params,
config.std_floor,
).to(device)
return outputnet
@staticmethod
def _get_embedded_input():
input_dummy, input_lengths, mel_spec, mel_lengths = _create_inputs()
input_dummy = torch.nn.Embedding(config_global.num_chars, config_global.encoder_in_out_features).to(device)(
input_dummy
)
one_timestep_frame = torch.randn(input_dummy.shape[0], config_global.memory_rnn_dim).to(device)
return input_dummy, one_timestep_frame
def test_outputnet_forward_with_flat_start(self):
model = self._get_outputnet()
input_dummy, one_timestep_frame = self._get_embedded_input()
mean, std, transition_vector = model(one_timestep_frame, input_dummy)
self.assertTrue(torch.isclose(mean, torch.tensor(model.flat_start_params["mean"] * 1.0)).all())
self.assertTrue(torch.isclose(std, torch.tensor(model.flat_start_params["std"] * 1.0)).all())
self.assertTrue(
torch.isclose(
transition_vector.sigmoid(), torch.tensor(model.flat_start_params["transition_p"] * 1.0)
).all()
)
|